Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering

Abstract This paper studies the joint state and parameter estimation problem for a linear state space system with time-delay. A multi-innovation gradient algorithm is developed based on the Kalman filtering principle. To improve the convergence rate, a filtering based multi-innovation gradient algorithm is proposed by using the filtering technique. The analysis indicates that the parameter estimates given by the proposed algorithms converge to their true values under the persistent excitation conditions. A simulation example is given to confirm that the proposed algorithms are effective.

[1]  Qing‐Guo Wang,et al.  Direct identification of continuous time delay systems from step responses , 2001 .

[2]  Feng Ding,et al.  The recursive least squares identification algorithm for a class of Wiener nonlinear systems , 2016, J. Frankl. Inst..

[3]  Guoqi Li,et al.  Identification of Wiener Systems With Clipped Observations , 2012, IEEE Trans. Signal Process..

[4]  X. Liu,et al.  Adaptive Neural Control of Pure-Feedback Nonlinear Time-Delay Systems via Dynamic Surface Technique , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Feng Ding,et al.  Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle , 2015, Signal Process..

[6]  Sofiène Affes,et al.  A Maximum Likelihood Time Delay Estimator in a Multipath Environment Using Importance Sampling , 2013, IEEE Transactions on Signal Processing.

[7]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[8]  Feng Ding,et al.  Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle , 2017, IET Signal Process..

[9]  Feng Ding,et al.  An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering , 2016, J. Frankl. Inst..

[10]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[11]  Qingxia Li,et al.  Array Factor Forming for Image Reconstruction of One-Dimensional Nonuniform Aperture Synthesis Radiometers , 2016, IEEE Geoscience and Remote Sensing Letters.

[12]  Hak-Keung Lam,et al.  Observer-Based Fault Detection for Nonlinear Systems With Sensor Fault and Limited Communication Capacity , 2016, IEEE Transactions on Automatic Control.

[13]  Yuanqing Xia,et al.  Adaptive parameter identification of linear SISO systems with unknown time-delay , 2014, Syst. Control. Lett..

[14]  Lang Tong,et al.  Subspace Methods for Data Attack on State Estimation: A Data Driven Approach , 2014, IEEE Transactions on Signal Processing.

[15]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[16]  Yide Wang,et al.  Fault diagnosis method based on FFT-RPCA-SVM for Cascaded-Multilevel Inverter. , 2016, ISA transactions.

[17]  Huiping Li,et al.  On Neighbor Information Utilization in Distributed Receding Horizon Control for Consensus-Seeking , 2016, IEEE Transactions on Cybernetics.

[18]  Feng Ding,et al.  Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition , 2016, J. Comput. Appl. Math..

[19]  F. Ding,et al.  Performance analysis of the generalised projection identification for time-varying systems , 2016 .

[20]  Wutao Yin,et al.  Identification of LPTV systems in the frequency domain , 2011, Digit. Signal Process..

[21]  Feng Ding,et al.  The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique , 2016, Signal Process..

[22]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[23]  Wei Xing Zheng,et al.  On indirect identification of feedback-control systems via the instrumental variables methods , 2003 .

[24]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[25]  Feng Ding,et al.  Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition , 2016, Circuits Syst. Signal Process..

[26]  Sohrab Effati,et al.  An iterative method for suboptimal control of linear time-delayed systems , 2015, Syst. Control. Lett..

[27]  Hieu Minh Trinh,et al.  Stability analysis of a general family of nonlinear positive discrete time-delay systems , 2016, Int. J. Control.

[28]  Huajing Fang,et al.  Minimum variance estimation for linear uncertain systems with one-step correlated noises and incomplete measurements , 2016, Digit. Signal Process..

[29]  Jian Pan,et al.  Image noise smoothing using a modified Kalman filter , 2016, Neurocomputing.

[30]  Huiping Li,et al.  Receding Horizon Formation Tracking Control of Constrained Underactuated Autonomous Underwater Vehicles , 2017, IEEE Transactions on Industrial Electronics.

[31]  Michel Verhaegen,et al.  Subspace identification of multivariable linear parameter-varying systems , 2002, Autom..

[32]  Bart De Moor,et al.  Subspace identification of bilinear systems subject to white inputs , 1999, IEEE Trans. Autom. Control..

[33]  Feng Ding,et al.  Combined state and multi-innovation parameter estimation for an input non-linear state-space system using the key term separation , 2016 .

[34]  Feng Ding,et al.  A novel parameter separation based identification algorithm for Hammerstein systems , 2016, Appl. Math. Lett..

[35]  Hao Wu,et al.  An adaptive confidence limit for periodic non-steady conditions fault detection , 2016 .

[36]  Jianqiang Pan,et al.  A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems , 2017 .

[37]  Wan Xiangkui,et al.  A T-wave alternans assessment method based on least squares curve fitting technique , 2016 .

[38]  Tao Tang,et al.  Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique , 2014 .

[39]  Huiping Li,et al.  Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ-gain stability , 2016, Autom..

[40]  Feng Ding,et al.  Recursive Least Squares and Multi-innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling , 2017, Circuits Syst. Signal Process..

[41]  Stéphane Lecoeuche,et al.  Propagator-based methods for recursive subspace model identification , 2008, Signal Process..

[42]  Isabella Lari,et al.  On a class of parameters estimators in linear models dominating the least squares one , 2016, Digit. Signal Process..

[43]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[44]  Ligang Wu,et al.  Observer-based adaptive sliding mode control for nonlinear Markovian jump systems , 2016, Autom..

[45]  Arash Amini,et al.  Parameters estimation for continuous-time heavy-tailed signals modeled by α-stable autoregressive processes , 2016, Digit. Signal Process..

[46]  Huiping Li,et al.  Model Predictive Stabilization of Constrained Underactuated Autonomous Underwater Vehicles With Guaranteed Feasibility and Stability , 2017, IEEE/ASME Transactions on Mechatronics.

[47]  Feng Ding,et al.  State filtering and parameter estimation for state space systems with scarce measurements , 2014, Signal Process..

[48]  Peng Shi,et al.  Adaptive Sliding-Mode Control of Markov Jump Nonlinear Systems With Actuator Faults , 2017, IEEE Transactions on Automatic Control.

[49]  Xiuxian Li,et al.  Consensus networks with switching topology and time-delays over finite fields , 2016, Autom..

[50]  F. Ding,et al.  Convergence of the auxiliary model-based multi-innovation generalized extended stochastic gradient algorithm for Box–Jenkins systems , 2015 .