Three-dimensional superresolution by annular binary filters

We present a new family of annular binary filters for improving the three-dimensional resolving power of optical systems. The filters, whose most important feature is their simplicity, permit to achieve a significant reduction, both in the transverse and in the axial direction, of the central lobe width of the irradiance point spread function of the system. The filters can be used for applications such as optical data storage or confocal scanning microscopy.

[1]  Pedro Andrés,et al.  One-dimensional error-diffusion technique adapted for binarization of rotationally symmetric pupil filters , 1995 .

[2]  H. Hopkins,et al.  Wave theory of aberrations , 1950 .

[3]  H. Ando,et al.  Optical Head With Annular Phase-shifting Apodizer , 1993 .

[4]  K. Kubota,et al.  High density recording by superresolution in an optical disk memory system. , 1990, Applied optics.

[5]  Richard Barakat,et al.  Solution of the Luneberg Apodization Problems , 1962 .

[6]  Pedro Andrés,et al.  Improvement of three-dimensional resolution in confocal scanning microscopy by combination of two pupil filters , 1998 .

[7]  T. Milster,et al.  Analysis of superresolution in magneto-optic data storage devices. , 1992, Applied optics.

[8]  A. Boivin Théorie et calcul des figures de diffraction de révolution , 1962 .

[9]  Hideo Ando,et al.  Phase-Shifting Apodizer of Three or More Portions : Head Technology , 1992 .

[10]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[11]  Ingemar J. Cox,et al.  Increasing the bit packing densities of optical disk systems. , 1984, Applied optics.

[12]  T. Wilson,et al.  The Use of Annular Pupil Plane Filters to Tune the Imaging Properties in Confocal Microscopy , 1990 .

[13]  Pedro Andrés,et al.  Annular binary filters for controlling the axial behaviour of optical systems , 1998 .

[14]  G. Michael Morris,et al.  DIFFRACTIVE SUPERRESOLUTION ELEMENTS , 1997 .

[15]  M. Martínez-Corral,et al.  Asymmetric apodization in confocal scanning systems. , 1998, Applied optics.

[16]  Colin J. R. Sheppard,et al.  Axial behavior of pupil-plane filters , 1988 .

[17]  Colin J. R. Sheppard,et al.  Improvement of axial resolution in confocal microscopy using an annular pupil , 1991 .

[18]  S Kawata,et al.  Reflection confocal microscope readout system for three-dimensional photochromic optical data storage. , 1998, Optics letters.

[19]  M Martínez-Corral,et al.  On-axis diffractional behavior of two-dimensional pupils. , 1994, Applied optics.

[20]  Zoltan S. Hegedus,et al.  Annular pupil arrays. Application to confocal scanning , 1985 .

[22]  Réalisation D'un Filtrage Super-résolvant , 1983 .

[23]  Colin J. R. Sheppard,et al.  Focal distribution for superresolving toraldo filters , 1998 .

[24]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[25]  Z Wang,et al.  Superresolution with an apodization film in a confocal setup. , 1997, Applied optics.

[26]  Colin J. R. Sheppard,et al.  Information capacity and resolution in an optical system , 1986 .

[27]  M Martínez-Corral,et al.  Tunable Optical Sectioning in Confocal Microscopy by use of Symmetrical Defocusing and Apodization. , 1998, Applied optics.

[28]  Stelzer Contrast, resolution, pixelation, dynamic range and signal‐to‐noise ratio: fundamental limits to resolution in fluorescence light microscopy , 1998 .

[29]  C. J. R. Sheppard,et al.  Leaky annular pupils for improved axial imaging , 1995 .

[30]  C Cremer,et al.  Confocal theta fluorescence microscopy with annular apertures. , 1996, Applied optics.

[31]  Pedro Andrés,et al.  Tunable axial superresolution by annular binary filters. Application to confocal microscopy , 1995 .

[32]  B. Roy Frieden,et al.  On Arbitrarily Perfect Imagery with a Finite Aperture , 1969 .

[33]  Steffen Lindek,et al.  Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy , 1994 .