Beneficial Effects of PbI2 Incorporated in Organo‐Lead Halide Perovskite Solar Cells

Y. C. Kim, Dr. N. J. Jeon, Dr. J. H. Noh, W. S. Yang, Dr. J. Seo, Prof. S. I. Seok Division of Advanced Materials Korea Research Institute of Chemical Technology 141 Gajeong-Ro , Yuseong-Gu , Deajeon 305-600 , South Korea E-mail: seoksi@unist.ac.kr W. S. Yang, Prof. S. I. Seok School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Eonyang-eup , Ulju-gun , Ulsan 689-798 , South Korea Dr. J. S. Yun, Dr. A. Ho-Baillie, Dr. S. Huang, Prof. M. A. Green Australian Centre for Advanced Photovoltaics (ACAP) School of Photovoltaic and Renewable and Engineering University of New South Wales Sydney 2052 , Australia Prof. J. Seidel School of Materials Science and Engineering University of New South Wales Sydney 2052 , Australia Prof. T. K. Ahn Department of Energy Science Sungkyunkwan University Suwon 440-746 , South Korea

[1]  M. Nazeeruddin,et al.  High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors , 2015 .

[2]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[3]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[4]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[5]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[6]  W. Daoud,et al.  Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design , 2015 .

[7]  T. Ahn,et al.  CuSbS2 -sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution. , 2015, Angewandte Chemie.

[8]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[9]  M. Green,et al.  Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[10]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[11]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[12]  L. Manna,et al.  The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics. , 2014, The journal of physical chemistry letters.

[13]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[14]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[15]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[16]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[17]  S. Kuwabata,et al.  Controllable electronic energy structure of size-controlled Cu2ZnSnS4 nanoparticles prepared by a solution-based approach. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Illan J. Kramer,et al.  The architecture of colloidal quantum dot solar cells: materials to devices. , 2014, Chemical reviews.

[19]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[20]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[21]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[22]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[23]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[24]  Sebastian Reineke,et al.  External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell , 2013, Science.

[25]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[26]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[27]  P. Mulvaney,et al.  Layer-by-layer assembly of sintered CdSe(x)Te1-x nanocrystal solar cells. , 2012, ACS nano.

[28]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[29]  Sang-Wook Kim,et al.  All solid state multiply layered PbS colloidal quantum-dot-sensitized photovoltaic cells , 2011 .

[30]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[31]  Hans Arwin,et al.  Electronic and optical properties of lead iodide , 2002 .

[32]  Kanai S. Shah,et al.  Electronic transport in polycrystalline Pbl2 films , 1999 .