Limit theorems for linear random fields with tapered innovations. II: The stable case

In the paper, we consider the limit behavior of partial-sum random field (r.f.) $$ \left.{S}_n\left({t}_1,{t}_2;\right)X\left(b\left(\mathbf{n}\right)\right)\right)={\sum}_{k=1}^{\left[{n}_1{t}_1\right]}{\sum}_{l=1}^{\left[{n}_2{t}_2\right]}{X}_{k,l}\left(b\left(\mathbf{n}\right)\right), $$ where $$ \left\{{X}_{k,l}\left(b\left(\mathbf{n}\right)\right)={\sum}_{i=0}^{\infty }{\sum}_{j=0}^{\infty }{c}_{i,j}{\upxi}_{k-i,l-j}\left(b\left(\mathbf{n}\right)\right),k,l\in \mathrm{\mathbb{Z}}\right\},n\ge 1, $$ is a family (indexed by n = (n1, n2), ni ≥ 1) of linear r.f.s with filter ci,j = aibj and innovations ξk,l(b(n)) having heavy-tailed tapered distributions with tapering parameter b(n) growing to infinity as n → ∞. In [V. Paulauskas, Limit theorems for linear random fields with tapered innovations. I: The Gaussian case, Lith. Math. J., 61(2):261–273, 2021], we considered the so-called hard tapering as b(n) grows relatively slowly and the limit r.f.s for appropriately normalized Sn(t1, t2;X(b(n))) are Gaussian. In this paper, we consider the case of soft tapering where b(n) grows more rapidly in comparison with the case of hard tapering and stable limit r.f.s.We consider cases where the sequences {ai} and {bj} are long-range, short-range, and negatively dependent.

[1]  V. Paulauskas A note on linear processes with tapered innovations , 2019, Lithuanian Mathematical Journal.

[2]  D. Surgailis,et al.  Aggregation of autoregressive random fields and anisotropic long-range dependence , 2013, 1303.2209.

[3]  D. Surgailis,et al.  Scaling transition for nonlinear random fields with long-range dependence , 2016, 1603.05222.

[4]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[5]  A note on the normalizing sequences for sums of linear processes in the case of negative memory , 2017 .

[6]  Gennady Samorodnitsky,et al.  Understanding Heavy Tails in a Bounded World or, is a Truncated Heavy Tail Heavy or Not? , 2010, 1001.3218.

[7]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[8]  Vygantas Paulauskas Limit Theorems for Linear Random Fields with Tapered Innovations. I: The Gaussian case , 2021 .

[9]  Julius Damarackas,et al.  On Lamperti type limit theorem and scaling transition for random fields , 2021 .

[10]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[11]  D. Surgailis,et al.  Invariance principles for tempered fractionally integrated processes , 2017, Stochastic Processes and their Applications.

[12]  J. Teugels,et al.  Regular Variation by N. H. Bingham , 1987 .

[13]  A. Astrauskas Limit theorems for sums of linearly generated random variables , 1983 .

[14]  V. Paulauskas,et al.  Some remarks on scaling transition in limit theorems for random fields. , 2019, 1903.09399.

[15]  D. Surgailis,et al.  Scaling transition for long-range dependent Gaussian random fields , 2014, 1409.2830.