Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization

Nanocrystalline silicon carbide (SiC) thin films were deposited by plasma enhanced chemical vapor deposition technique at different deposition temperatures (Td) ranging from 80 to 575 °C and different gas flow ratios (GFRs). While diethylsilane was used as the source for the preparation of SiC films, hydrogen, argon and helium were used as dilution gases in different concentrations. The effects of Td, GFR and dilution gases on the structural and optical properties of these films were investigated using high resolution transmission electron microscope (HRTEM), micro-Raman, Fourier transform infrared (FTIR) and ultraviolet-visible optical absorption techniques. Detailed analysis of the FTIR spectra indicates the onset of formation of SiC nanocrystals embedded in the amorphous matrix of the films deposited at a temperature of 300 °C. The degree of crystallization increases with increasing Td and the crystalline fraction (fc) is 65%±2.2% at 575 °C. The fc is the highest for the films deposited with hydrogen d...

[1]  M. T. Kim,et al.  Characterization of amorphous SiC:H films deposited from hexamethyldisilazane , 1997 .

[2]  S. Nakashima,et al.  Raman Scattering on SiC Polytypes —Probe for Evaluation of the Lattice Vibrational Amplitudes— , 1988 .

[3]  H. Itoh,et al.  Low dielectric constant insulator formed by downstream plasma CVD at room temperature using TMS/O2 , 1997 .

[4]  Rusli,et al.  Deposition of nanocrystalline cubic silicon carbide films using the hot-filament chemical-vapor-deposition method , 2000 .

[5]  S. Kerdilès,et al.  Growth Control And Characterization Of Wide Band Gap Silicon-Carbon Films , 1997 .

[6]  Alfred Grill,et al.  LOW DIELECTRIC CONSTANT FILMS PREPARED BY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION FROM TETRAMETHYLSILANE , 1999 .

[7]  Norman Herron,et al.  Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties , 1991 .

[8]  F. Demichelis,et al.  Characterization of the effect of growth conditions on a‐SiC:H films , 1996 .

[9]  L. Calcagno,et al.  Relaxation and crystallization of amorphous silicon carbide probed by optical measurements , 1997 .

[10]  T. Yew,et al.  Microcrystalline SiC Films Grown by Electron Cyclotron Resonance Chemical Vapor Deposition at Low Temperatures , 1995 .

[11]  S. R. Wilson,et al.  Dielectric functions of bulk 4H and 6H SiC and spectroscopic ellipsometry studies of thin SiC films on Si , 1999 .

[12]  Philip G. Neudeck,et al.  Progress in silicon carbide semiconductor electronics technology , 1995 .

[13]  S. Logothetidis,et al.  Dielectric function and reflectivity of 3C–silicon carbide and the component perpendicular to the c axis of 6H–silicon carbide in the energy region 1.5–9.5 eV , 1996 .

[14]  H. Pépin,et al.  Characterization of a‐SiC:H films produced in a standard plasma enhanced chemical vapor deposition system for x‐ray mask application , 1992 .

[15]  P. Brogueira,et al.  Transport and photoluminescence of hydrogenated amorphous silicon–carbon alloys , 1995 .

[16]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[17]  Fabrice Gourbilleau,et al.  Low temperature deposition of nanocrystalline silicon carbide thin films , 2000 .

[18]  S. Kerdilès,et al.  Spectroscopic ellipsometry analysis of nanocrystalline silicon carbide obtained at low temperature , 2001 .

[19]  S. Kerdilès,et al.  Low temperature direct growth of nanocrystalline silicon carbide films , 2000 .

[20]  J. Wigmore,et al.  Characterization of 3C-SiC films grown on monocrystalline Si by reactive hydrogen plasma sputtering , 1997 .

[21]  F. Demichelis,et al.  Influence of doping on the structural and optoelectronic properties of amorphous and microcrystalline silicon carbide , 1992 .

[22]  F. Smole,et al.  Effects of abrupt and graded a‐Si:C:H/a‐Si:H interface on internal properties and external characteristics of p‐i‐n a‐Si:H solar cells , 1992 .

[23]  X. Correig,et al.  ANALYSIS OF CONDUCTION MECHANISMS IN ANNEALED N-SI1-XCX:H/P.-CRYSTALLINE SI HETEROJUNCTION DIODES FOR DIFFERENT DOPING CONCENTRATIONS , 1999 .

[24]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[25]  Domenico Caputo,et al.  Solar-blind UV photodetectors for large area applications , 1996 .

[26]  L. Ley,et al.  Isotope Effects on the Raman Spectrum of SiC , 2000 .

[27]  Yasuhiro Shiraki,et al.  Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE , 1986 .

[28]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[29]  D. A. Kleinman,et al.  Infrared Properties of Hexagonal Silicon Carbide , 1959 .

[30]  Matthew F. Chisholm,et al.  Optical functions of chemical vapor deposited thin‐film silicon determined by spectroscopic ellipsometry , 1993 .

[31]  H. Dunken,et al.  Vibrational spectroscopy of SiC thin films deposited by excimer laser ablation , 1999 .