Identifying dynamic model parameters of a BLDC motor

Abstract An off-line identification method founded on the least-squares approximation technique and a closed-loop disturbance observer is applied for identifying the parameters of a BLDC motor model. No special configuration of the motor is required besides the availability of experimental data for back-EMF, phase currents, rotor position, and rotor speed. This method is used to identify the back-EMF harmonics and mechanical parameters, where the mechanical parameters refer to cogging-torque, viscous friction coefficient, and Coulomb friction coefficient. The proposed identification method is theoretically investigated, and the method’s effectiveness is proved by experimental results performed on a low-power BLDC motor.

[1]  Wenxin Liu,et al.  Particle Swarm Optimization Based Parameter Identification Applied to PMSM , 2007, 2007 American Control Conference.

[2]  Liangtao Zhu,et al.  Real-time multiple parameter estimation for voltage controlled brushless DC motor actuators , 2004, Proceedings of the 2004 American Control Conference.

[3]  Karel Jezernik,et al.  Rapid Control Prototyping using MATLAB/Simulink and a DSP-based Motor Controller* , 2005 .

[4]  Kuang-Yao Cheng,et al.  Design of a sensorless commutation IC for BLDC motors , 2003 .

[5]  Lei Zhang,et al.  A New Torque Control Method for Torque Ripple Minimization of BLDC Motors With Un-Ideal Back EMF , 2008, IEEE Transactions on Power Electronics.

[6]  Yassine Koubaa Asynchronous machine parameters estimation using recursive method , 2006, Simul. Model. Pract. Theory.

[7]  Ion Boldea,et al.  Comprehensive Experimental Analysis of the IPMSM for Automotive Applications , 2006, 2006 12th International Power Electronics and Motion Control Conference.

[8]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[9]  Tarek Tutunji,et al.  Mechatronic systems identification using an impulse response recursive algorithm , 2007, Simul. Model. Pract. Theory.

[10]  J. Shao,et al.  An Improved Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Applications , 2005, IEEE Transactions on Industry Applications.

[11]  John Y. Hung,et al.  Design of currents to reduce torque ripple in brushless permanent magnet motors , 1993 .

[12]  Wootaik Lee,et al.  Dynamic Simulation of Brushless DC Motor Drives Considering Phase Commutation for Automotive Applications , 2007, 2007 IEEE International Electric Machines & Drives Conference.

[13]  Rafael Kelly,et al.  A measurement procedure for viscous and coulomb friction , 2000, IEEE Trans. Instrum. Meas..

[14]  Sandeep Jain,et al.  Robust adaptive control of variable reluctance stepper motors , 1999, IEEE Trans. Control. Syst. Technol..

[15]  John N. Chiasson,et al.  High-speed parameter estimation of stepper motors , 1993, IEEE Trans. Control. Syst. Technol..

[16]  Jun-Hyuk Choi,et al.  The Design and Fabrication of BLDC Motor and Drive for 42V Automotive Applications , 2007, 2007 IEEE International Symposium on Industrial Electronics.

[17]  Joachim Holtz,et al.  Identification and compensation of torque ripple in high-precision permanent magnet motor drives , 1996, IEEE Trans. Ind. Electron..

[18]  T. Lipo,et al.  Vector Control and Dynamics of AC Drives , 1996 .