Nano-watt 0.3 V supply resistorless voltage reference with Schottky diode

The analysis and design of a resistorless sub-bandgap voltage reference using Schottky diode and Low-V<sub>To</sub> transistors is presented herein. The circuit is self-biased and works in the nano-ampere consumption range, achieving full operation at 0.3 V of supply voltage. The design is validated through post-layout simulations including process variability analysis, for a commercial 130 nm CMOS process. A voltage reference of 102.8 mV is reached under V<sub>DD</sub> = 1.2V and 92.5 mV for V<sub>DD</sub> = 0.3V, with a temperature coefficient (TC) of 215.7 ppm/°C and 216 ppm/°C, respectively using curvature correction to improve the TC in the range from -40° C to 120° C. The current consumption is 212 nA with V<sub>DD</sub> = 1.2V at 27°C, and the chip area is 0.0068 mm<sup>2</sup>.

[1]  Mohamad Sawan,et al.  Fully-integrated 86 mV–1V step-up converter for energy harvesting applications , 2014, 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS).

[2]  Sergio Bampi,et al.  0.7 V supply, 8 nW, 8 ppm/°C resistorless sub-bandgap voltage reference , 2014, 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS).

[3]  S. Bampi,et al.  Curvature correction method based on subthreshold currents for bandgap voltage references , 2012, 2012 IEEE 3rd Latin American Symposium on Circuits and Systems (LASCAS).

[4]  David Blaauw,et al.  A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V , 2012, IEEE Journal of Solid-State Circuits.

[5]  Sergio Bampi,et al.  0.5 V supply resistorless voltage reference for low voltage applications , 2015, 2015 28th Symposium on Integrated Circuits and Systems Design (SBCCI).

[6]  Carlos Galup-Montoro,et al.  CMOS Analog Design Using All-Region MOSFET Modeling: CMOS Analog Design Using All-Region MOSFET Modeling , 2010 .

[7]  Peter R. Kinget,et al.  Voltage references for ultra-low supply voltages , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[8]  Nobutaka Kuroki,et al.  1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.

[9]  Ming-Dou Ker,et al.  A CMOS bandgap reference circuit for sub-1-V operation without using extra low-threshold-voltage device , 2004 .

[10]  K. Leung,et al.  A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device , 2002, IEEE J. Solid State Circuits.

[11]  G. Iannaccone,et al.  A Sub- ${\boldsymbol kT}/\boldsymbol q$ Voltage Reference Operating at 150 mV , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[12]  Sergio Bampi,et al.  0.9 V, 5 nW, 9 ppm/oC resistorless sub-bandgap voltage reference in 0.18μm CMOS , 2014, 2014 IEEE 5th Latin American Symposium on Circuits and Systems.

[13]  Giuseppe Iannaccone,et al.  A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.

[14]  K. Sakui,et al.  A CMOS bandgap reference circuit with sub-1-V operation , 1999 .

[15]  Ralf Brederlow,et al.  An Ultra Low Power Bandgap Operational at Supply From 0.75 V , 2012, IEEE Journal of Solid-State Circuits.

[16]  Ming-Dou Ker,et al.  A CMOS bandgap reference circuit for sub-1-V operation without using extra low-threshold-voltage device , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[17]  Felice Crupi,et al.  A Sub-kT/q Voltage Reference Operating at 150 mV , 2015, IEEE Trans. Very Large Scale Integr. Syst..

[18]  Byung-Do Yang 250-mV Supply Subthreshold CMOS Voltage Reference Using a Low-Voltage Comparator and a Charge-Pump Circuit , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Yintang Yang,et al.  A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.