A boundary integral algorithm for the Laplace Dirichlet-Neumann mixed eigenvalue problem

We present a novel integral-equation algorithm for evaluation of Zaremba eigenvalues and eigenfunctions, that is, eigenvalues and eigenfunctions of the Laplace operator with mixed Dirichlet-Neumann boundary conditions; of course, (slight modifications of) our algorithms are also applicable to the pure Dirichlet and Neumann eigenproblems. Expressing the eigenfunctions by means of an ansatz based on the single layer boundary operator, the Zaremba eigenproblem is transformed into a nonlinear equation for the eigenvalue µ. For smooth domains the singular structure at Dirichlet-Neumann junctions is incorporated as part of our corresponding numerical algorithm-which otherwise relies on use of the cosine change of variables, trigonometric polynomials and, to avoid the Gibbs phenomenon that would arise from the solution singularities, the Fourier Continuation method (FC). The resulting numerical algorithm converges with high order accuracy without recourse to use of meshes finer than those resulting from the cosine transformation. For non-smooth (Lipschitz) domains, in turn, an alternative algorithm is presented which achieves high-order accuracy on the basis of graded meshes. In either case, smooth or Lipschitz boundary, eigenvalues are evaluated by searching for zero minimal singular values of a suitably stabilized discrete version of the single layer operator mentioned above. (The stabilization technique is used to enable robust non-local zero searches.) The resulting methods, which are fast and highly accurate for high- and low-frequencies alike, can solve extremely challenging two-dimensional Dirichlet, Neumann and Zaremba eigenproblems with high accuracies in short computing times-enabling, in particular, evaluation of thousands of eigenvalues and corresponding eigenfunctions for a given smooth or non-smooth geometry with nearly full double-precision accuracy.

[1]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[2]  Oscar P. Bruno,et al.  A high-order integral algorithm for highly singular PDE solutions in Lipschitz domains , 2009, Computing.

[3]  Dieter Gromes,et al.  Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche , 1966 .

[4]  Mark Lyon,et al.  High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements , 2010, J. Comput. Phys..

[5]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[6]  Norio Kamiya,et al.  Eigenvalue analysis by the boundary element method: new developments , 1993 .

[7]  Erich Martensen,et al.  Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen , 1963 .

[8]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[9]  N. Moiseyev,et al.  Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling , 1998 .

[10]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[11]  Michael E. Taylor,et al.  Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .

[12]  V. Rokhlin Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .

[13]  Ernst P. Stephan,et al.  On the integral equation method for the plane mixed boundary value problem of the Laplacian , 1979 .

[14]  Ying-Te Lee,et al.  Mathematical analysis and numerical study to free vibrations of annular plates using BIEM and BEM , 2006 .

[15]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[16]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[17]  Weichung Yeih,et al.  APPLICATIONS OF THE GENERALIZED SINGULAR-VALUE DECOMPOSITION METHOD ON THE EIGENPROBLEM USING THE INCOMPLETE BOUNDARY ELEMENT FORMULATION , 2000 .

[18]  Nathan Albin,et al.  A spectral FC solver for the compressible Navier-Stokes equations in general domains I: Explicit time-stepping , 2011, J. Comput. Phys..

[19]  Arthur D. Yaghjian,et al.  Derivation and Application of Dual-Surface Integral Equations for Three- Dimensional, Multi-Wavelength Perfect Conductors , 1989 .

[20]  Olaf Steinbach,et al.  Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem , 2012, SIAM J. Numer. Anal..

[21]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[22]  Pedro Freitas,et al.  Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in R^d , 2009, 0908.2327.

[23]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[24]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[25]  George Szekeres,et al.  Numerical evaluation of high-dimensional integrals , 1964 .

[26]  K. Wright Differential equations for the analytic singular value decomposition of a matrix , 1992 .

[27]  Jean-Claude Nédélec,et al.  Numerical stability in the calculation of eigenfrequencies using integral equations , 2001 .

[28]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[29]  David Colton,et al.  Qualitative Methods in Inverse Scattering Theory , 1997 .

[30]  Ralf Schweizer,et al.  Integral Equation Methods In Scattering Theory , 2016 .

[31]  Ian H. Sloan,et al.  On integral equations of the first kind with logarithmic kernels , 1988 .

[32]  Lin Zhao,et al.  Robust and Efficient Solution of the Drum Problem via Nyström Approximation of the Fredholm Determinant , 2014, SIAM J. Numer. Anal..

[33]  Rainer Kress,et al.  A Nyström method for boundary integral equations in domains with corners , 1990 .

[34]  A. Choudary,et al.  Partial Differential Equations An Introduction , 2010, 1004.2134.

[35]  Christophe Hazard,et al.  Variational formulations for the determination of resonant states in scattering problems , 1992 .

[36]  Yu. Netrusov,et al.  Weyl Asymptotic Formula for the Laplacian on Domains with Rough Boundaries , 2003 .

[37]  Oscar P. Bruno,et al.  Regularity Theory and Superalgebraic Solvers for Wire Antenna Problems , 2007, SIAM J. Sci. Comput..

[38]  Olaf Steinbach,et al.  A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator , 2009, Numerische Mathematik.

[39]  Mark Lyon,et al.  High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations , 2010, J. Comput. Phys..

[40]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[41]  Oscar P. Bruno,et al.  A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space , 2012, J. Comput. Phys..

[42]  Xuefeng Liu,et al.  Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..

[43]  Neil M. Wigley,et al.  Mixed boundary value problems in plane domains with corners , 1970 .

[44]  S. Chyuan,et al.  Boundary element analysis for the Helmholtz eigenvalue problems with a multiply connected domain , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Hong-Ki Hong,et al.  Spurious and true eigensolutions of Helmholtz BIEs and BEMs for a multiply connected problem , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  Timo Betcke The Generalized Singular Value Decomposition and the Method of Particular Solutions , 2008, SIAM J. Sci. Comput..

[47]  Oscar P. Bruno,et al.  Second‐kind integral solvers for TE and TM problems of diffraction by open arcs , 2012, 1204.3701.

[48]  Cleve B. Moler Accurate bounds for the eigenvalues of the Laplacian and applications to rhombical domains , 1969 .

[49]  Rainer Kußmaul,et al.  Ein numerisches Verfahren zur Lösung des Neumannschen Außenraumproblems für die Helmholtzsche Schwingungsgleichung , 1969, Computing.