A boundary integral algorithm for the Laplace Dirichlet-Neumann mixed eigenvalue problem
暂无分享,去创建一个
[1] R. Kress,et al. Integral equation methods in scattering theory , 1983 .
[2] Oscar P. Bruno,et al. A high-order integral algorithm for highly singular PDE solutions in Lipschitz domains , 2009, Computing.
[3] Dieter Gromes,et al. Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche , 1966 .
[4] Mark Lyon,et al. High-order unconditionally stable FC-AD solvers for general smooth domains I. Basic elements , 2010, J. Comput. Phys..
[5] O. Bruno,et al. A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .
[6] Norio Kamiya,et al. Eigenvalue analysis by the boundary element method: new developments , 1993 .
[7] Erich Martensen,et al. Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen , 1963 .
[8] C. Moler,et al. APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .
[9] N. Moiseyev,et al. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling , 1998 .
[10] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[11] Michael E. Taylor,et al. Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .
[12] V. Rokhlin. Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .
[13] Ernst P. Stephan,et al. On the integral equation method for the plane mixed boundary value problem of the Laplacian , 1979 .
[14] Ying-Te Lee,et al. Mathematical analysis and numerical study to free vibrations of annular plates using BIEM and BEM , 2006 .
[15] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[16] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[17] Weichung Yeih,et al. APPLICATIONS OF THE GENERALIZED SINGULAR-VALUE DECOMPOSITION METHOD ON THE EIGENPROBLEM USING THE INCOMPLETE BOUNDARY ELEMENT FORMULATION , 2000 .
[18] Nathan Albin,et al. A spectral FC solver for the compressible Navier-Stokes equations in general domains I: Explicit time-stepping , 2011, J. Comput. Phys..
[19] Arthur D. Yaghjian,et al. Derivation and Application of Dual-Surface Integral Equations for Three- Dimensional, Multi-Wavelength Perfect Conductors , 1989 .
[20] Olaf Steinbach,et al. Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem , 2012, SIAM J. Numer. Anal..
[21] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[22] Pedro Freitas,et al. Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in R^d , 2009, 0908.2327.
[23] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[24] M. Bleszynski,et al. AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .
[25] George Szekeres,et al. Numerical evaluation of high-dimensional integrals , 1964 .
[26] K. Wright. Differential equations for the analytic singular value decomposition of a matrix , 1992 .
[27] Jean-Claude Nédélec,et al. Numerical stability in the calculation of eigenfrequencies using integral equations , 2001 .
[28] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[29] David Colton,et al. Qualitative Methods in Inverse Scattering Theory , 1997 .
[30] Ralf Schweizer,et al. Integral Equation Methods In Scattering Theory , 2016 .
[31] Ian H. Sloan,et al. On integral equations of the first kind with logarithmic kernels , 1988 .
[32] Lin Zhao,et al. Robust and Efficient Solution of the Drum Problem via Nyström Approximation of the Fredholm Determinant , 2014, SIAM J. Numer. Anal..
[33] Rainer Kress,et al. A Nyström method for boundary integral equations in domains with corners , 1990 .
[34] A. Choudary,et al. Partial Differential Equations An Introduction , 2010, 1004.2134.
[35] Christophe Hazard,et al. Variational formulations for the determination of resonant states in scattering problems , 1992 .
[36] Yu. Netrusov,et al. Weyl Asymptotic Formula for the Laplacian on Domains with Rough Boundaries , 2003 .
[37] Oscar P. Bruno,et al. Regularity Theory and Superalgebraic Solvers for Wire Antenna Problems , 2007, SIAM J. Sci. Comput..
[38] Olaf Steinbach,et al. A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator , 2009, Numerische Mathematik.
[39] Mark Lyon,et al. High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations , 2010, J. Comput. Phys..
[40] Lloyd N. Trefethen,et al. Reviving the Method of Particular Solutions , 2005, SIAM Rev..
[41] Oscar P. Bruno,et al. A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space , 2012, J. Comput. Phys..
[42] Xuefeng Liu,et al. Verified Eigenvalue Evaluation for the Laplacian over Polygonal Domains of Arbitrary Shape , 2012, SIAM J. Numer. Anal..
[43] Neil M. Wigley,et al. Mixed boundary value problems in plane domains with corners , 1970 .
[44] S. Chyuan,et al. Boundary element analysis for the Helmholtz eigenvalue problems with a multiply connected domain , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[45] Hong-Ki Hong,et al. Spurious and true eigensolutions of Helmholtz BIEs and BEMs for a multiply connected problem , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[46] Timo Betcke. The Generalized Singular Value Decomposition and the Method of Particular Solutions , 2008, SIAM J. Sci. Comput..
[47] Oscar P. Bruno,et al. Second‐kind integral solvers for TE and TM problems of diffraction by open arcs , 2012, 1204.3701.
[48] Cleve B. Moler. Accurate bounds for the eigenvalues of the Laplacian and applications to rhombical domains , 1969 .
[49] Rainer Kußmaul,et al. Ein numerisches Verfahren zur Lösung des Neumannschen Außenraumproblems für die Helmholtzsche Schwingungsgleichung , 1969, Computing.