Traditional Mexican Food: Phenolic Content and Public Health Relationship

Phenolic compounds have a positive effect on obesity, diabetes, and cardiovascular diseases because of their antioxidant and anti-inflammatory capacity. The prevalence of these diseases has increased in the last years in the Mexican population. Therefore, the Mexican diet must be assessed as provider of phenolic compounds. To assess this, a survey of phenolic compound intake was validated and applicated to 973 adults (798 females) between 18 and 79 years old. We compared the phenolic compound intake of 324 participants with more diseases (239 females) and 649 participants with healthier condition (559 females). The groups differed in sex, age, and scholarship. Males, older participants, and those with lower schooling reported suffering from more diseases. Regarding phenolic compound intake analyses, the participants with healthier conditions displayed a higher phenolic compound intake than the other group in all foods assessed. In addition, the regression model showed that the phenolic compounds intake of Mexican dishes, such as arroz con frijol or enchiladas, positively affected health status, suggesting that this traditional food is beneficial for the participant’s health condition. However, the weight effect of PCI was different for each disease. We conclude that, although PCI of Mexican food positively affects health conditions, this effect depends on sex, age, and participants’ diseases.

[1]  A. Hassoun,et al.  Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. , 2022, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[2]  A. Hassoun,et al.  Astounding Health Benefits of Jamun (Syzygium cumini) toward Metabolic Syndrome , 2022, Molecules.

[3]  R. Aadil,et al.  Delving into the Therapeutic Potential of Carica papaya Leaf against Thrombocytopenia , 2022, Molecules.

[4]  H. Hanine,et al.  First Study of Improved Nutritional Properties and Anti-Oxidant Activity in Novel Sesame Mutant Lines as Compared to Their Wild-Types , 2022, Plants.

[5]  A. Rauf,et al.  Correction to “Determination and Characterization of Phenolic Compounds from Australia-Grown Sweet Cherries (Prunus avium L.) and Their Potential Antioxidant Properties” , 2022, ACS omega.

[6]  A. Silva,et al.  Chemical Composition and Potential Biological Activity of Melanoidins From Instant Soluble Coffee and Instant Soluble Barley: A Comparative Study , 2022, Frontiers in Nutrition.

[7]  C. Bowyer,et al.  Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation , 2022, Biology.

[8]  J. Aguayo Rojas,et al.  Fitoquímicos y propiedades nutraceúticas de durazno (Prunus persica L.) cultivado en Zacatecas , 2022, Polibotánica.

[9]  D. Granato,et al.  Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects , 2021 .

[10]  Sugey Vásquez Hernández,et al.  Evaluation of different antioxidants during in vitro establishment of allspice (Pimenta dioica L. Merrill): a recalcitrant species , 2021, Agro Productividad.

[11]  F. Rinaldi,et al.  Comparative Analysis of Phenolic Composition of Six Commercially Available Chamomile (Matricaria chamomilla L.) Extracts: Potential Biological Implications , 2021, International journal of molecular sciences.

[12]  M. Bucciantini,et al.  Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties , 2021, Antioxidants.

[13]  G. Dávila-Ortíz,et al.  Phenolic Compounds in Legumes: Composition, Processing and Gut Health , 2021, Legumes [Working Title].

[14]  Ratna Handayani,et al.  COMPARISON STUDY OF ANTIOXIDANT ACTIVITY FROM THREE BANANA LEAVES EXTRACTS , 2021, Jurnal Teknologi dan Industri Pangan.

[15]  H. Suleria,et al.  Characterization of Phenolics in Rejected Kiwifruit and Their Antioxidant Potential , 2021, Processes.

[16]  J. L. Chávez-Servia,et al.  Physicochemical Characterization and Functional Potential of Phaseolus vulgaris L. and Phaseolus coccineus L. Landrace Green Beans , 2021, Agronomy.

[17]  A. Hussain,et al.  Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin ( Cucurbita maxima ) , 2021 .

[18]  G. Niño-Medina,et al.  Compuestos fenólicos y actividad antioxidante en líneas experimentales de sorgo pigmentado cultivado en Coahuila México , 2021 .

[19]  B. Arjmandi,et al.  Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases , 2021, Nutrients.

[20]  M. Estarrón-Espinosa,et al.  Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity , 2021, Molecules.

[21]  H. Suleria,et al.  A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties , 2021, Antioxidants.

[22]  R. Owen,et al.  Dietary ethanol extract of mango increases antioxidant activity of pork. , 2021, Animal : an international journal of animal bioscience.

[23]  M. Morgan,et al.  Polyphenol bioaccessibility and anti-inflammatory activity of Mexican common beans (Phaseolus vulgaris L.) with diverse seed colour , 2021 .

[24]  G. González-Aguilar,et al.  Quality, bioactive compounds and antioxidant capacity of raspberries cultivated in northern Mexico , 2021, International Journal of Food Properties.

[25]  E. Llorent-Martínez,et al.  Phytochemical Composition and Antioxidant Activity of Portulaca oleracea: Influence of the Steaming Cooking Process , 2021, Foods.

[26]  S. Barquera,et al.  [Obesity in Mexico, prevalence andtrends in adults. Ensanut 2018-19.] , 2020, Salud publica de Mexico.

[27]  J. Welti‐Chanes,et al.  Phenolic Compounds in Mesoamerican Fruits—Characterization, Health Potential and Processing with Innovative Technologies , 2020, International journal of molecular sciences.

[28]  Rajwinder Kaur,et al.  Pleotropic Effects of Polyphenols in Cardiovascular System. , 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[29]  M. Shariati,et al.  Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders , 2020, Antioxidants.

[30]  D. Himmelgreen,et al.  Using syndemic theory to understand food insecurity and diet-related chronic diseases. , 2020, Social science & medicine.

[31]  G. Drezner,et al.  Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops , 2020, Antioxidants.

[32]  N. Killiny,et al.  Phenolics, flavonoids and antioxidant capacities in Citrus species with different degree of tolerance to Huanglongbing , 2020, Plant signaling & behavior.

[33]  C. Cruz-Cruz,et al.  Evaluation of different antioxidants during in vitro establishment of allspice (Pimenta dioica L. Merrill): a recalcitrant species , 2020 .

[34]  S. Jamilah,et al.  Antioxidant activity and Total Phenolic Contents of Bread Enriched with Pumpkin Flour , 2020, IOP Conference Series: Earth and Environmental Science.

[35]  M. Flores-Córdova,et al.  Determination of antioxidant phenolic, nutritional quality and volatiles in pomegranates (Punica granatum L.) cultivated in Mexico , 2020 .

[36]  N. Valchev Nutritional and amino acid content of stem and cap of Agaricus bisporus, Bulgaria , 2020 .

[37]  R. Guiné,et al.  Evaluation of phenolic and antioxidant properties of strawberry as a function of extraction conditions , 2020, Brazilian Journal of Food Technology.

[38]  Дмитрий Алексеевич Коновалов,et al.  Фенольные соединения лавра благородного (обзор) , 2019 .

[39]  A. I. Barrera-Rodríguez,et al.  Efecto de dos métodos de secado en los compuestos fenólicos totales, L-DOPA y la actividad antioxidante de Vicia faba L. , 2019, Nova Scientia.

[40]  M. Armstrong,et al.  Definition of the Traditional Mexican Diet and Its Role in Health: A Systematic Review , 2019, Nutrients.

[41]  M. Agudelo-Botero,et al.  Sex disparities in the epidemic of type 2 diabetes in Mexico: national and state level results based on the Global Burden of Disease Study, 1990–2017 , 2019, Diabetes, metabolic syndrome and obesity : targets and therapy.

[42]  A. Hayes,et al.  The natural phenolic compounds as modulators of NADPH oxidases in hypertension. , 2019, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[43]  María Teresa Martínez Damián,et al.  INTENSIDAD DE COLOR Y COMPUESTOS BIOACTIVOS EN COLECTAS DE CHILE GUAJILLO DEL NORTE DE MÉXICO. , 2019, Revista Mexicana de Ciencias Agrícolas.

[44]  Kanikkai Raja Aseer,et al.  Dietary polyphenols and their roles in fat browning. , 2019, The Journal of nutritional biochemistry.

[45]  A. Pintea,et al.  Bioactive Compounds and Antioxidant Activity in Some Fresh and Canned Aromatic Herbs , 2018, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology.

[46]  E. Altuntaş,et al.  Evaluation of antioxidant capacities and phenolic profiles in Tilia cordata fruit extracts: A comparative study to determine the efficiency of traditional hot water infusion method , 2018, Industrial crops and products (Print).

[47]  J. A. Torres-Castillo,et al.  Free Radical-Scavenging Capacities, Phenolics and Capsaicinoids in Wild Piquin Chili (Capsicum annuum var. Glabriusculum) , 2018, Molecules.

[48]  Ma. Adelina Jiménez-Arellanes,et al.  CARACTERÍSTICAS NUTRICIONALES Y NUTRACÉUTICAS DE HORTALIZAS DE USO ANCESTRAL EN MÉXICO , 2018, Revista Fitotecnia Mexicana.

[49]  S. Frančula-Zaninović,et al.  Management of Measurable Variable Cardiovascular Disease' Risk 
Factors , 2018, Current cardiology reviews.

[50]  Amro B. Hassan,et al.  Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits , 2018, Food science & nutrition.

[51]  Choon Nam Ong,et al.  Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables , 2018, Molecules.

[52]  V. Heřmanová,et al.  Antioxidant activity of selected phenols and herbs used in diets for medical conditions , 2018 .

[53]  Jie Liu,et al.  The semantic system is involved in mathematical problem solving , 2018, NeuroImage.

[54]  A. Ia,et al.  Phenolic profile and antioxidant capacity of Cnidoscolus chayamansa and Cnidoscolus aconitifolius: A review , 2017 .

[55]  L. Dorantes-Álvarez,et al.  Comparison Between Antioxidant Activities of Phenolic Extracts from Mexican Peanuts, Peanuts Skins, Nuts and Pistachios , 2017 .

[56]  M. Bronze,et al.  Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. , 2017, Food chemistry.

[57]  A. Vidal-Puig,et al.  Dietary (Poly)phenols, Brown Adipose Tissue Activation, and Energy Expenditure: A Narrative Review. , 2017, Advances in nutrition.

[58]  María Elena Luna Morales,et al.  EVALUACIÓN DE COMPONENTES BIOACTIVOS Y COMPUESTOS ANTINUTRICIONALES EN SEMILLAS DE MIJO PERLA (PENNISETUM GLAUCUM) , 2017 .

[59]  J. Olefsky,et al.  Inflammatory mechanisms linking obesity and metabolic disease , 2017, The Journal of clinical investigation.

[60]  M. Nadeem,et al.  Antioxidant Activity, Anti-Inflammatory Activities, Anti-Cancer and Chemical Composition of Spring Onion (Allium Fistolisum) Extracts , 2017 .

[61]  A. Kar,et al.  In-vitro antioxidative potential of different fractions from Prunus dulcis seeds: Vis a vis antiproliferative and antibacterial activities of active compounds , 2017 .

[62]  M. Ferruzzi,et al.  Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment. , 2016, Advances in nutrition.

[63]  Hong Chen,et al.  An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes , 2016, Molecules.

[64]  R. Mora-Escobedo,et al.  Evaluation of extracts from potato and tomato wastes as natural antioxidant additives , 2016 .

[65]  E. Riboli,et al.  Dietary polyphenol intake in Europe: the European Prospective Investigation into Cancer and Nutrition (EPIC) study , 2016, European Journal of Nutrition.

[66]  M. Grusak,et al.  Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables , 2015, Plant Foods for Human Nutrition.

[67]  Carrie L. Martin,et al.  A New Database Facilitates Characterization of Flavonoid Intake, Sources, and Positive Associations with Diet Quality among US Adults. , 2015, The Journal of nutrition.

[68]  Shinyoung Jun,et al.  Estimation of dietary flavonoid intake and major food sources of Korean adults , 2015, British Journal of Nutrition.

[69]  L. De Bellis,et al.  Betalains, Phenols and Antioxidant Capacity in Cactus Pear [Opuntia ficus-indica (L.) Mill.] Fruits from Apulia (South Italy) Genotypes , 2015, Antioxidants.

[70]  M. Lutz,et al.  Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile , 2015 .

[71]  V. Nour,et al.  Total Phenolic, Flavonoid Distribution and Antioxidant Capacity in Skin, Pulp and Fruit Extracts of Plum Cultivars , 2015 .

[72]  Ghada H. H. Ismaiel,et al.  The antioxidant and Anticancer Activities of Swiss Chard and Red Beetroot Leaves , 2015 .

[73]  R. Ksouri,et al.  Ripening Stage and Extraction Method Effects on Physical Properties, Polyphenol Composition and Antioxidant Activities of Cumin (Cuminum cyminum L.) Seeds , 2014, Plant Foods for Human Nutrition.

[74]  Jorge E. Wong-Paz,et al.  Microplate quantification of total phenolic content from plant extracts obtained by conventional and ultrasound methods. , 2014, Phytochemical analysis : PCA.

[75]  W. Loke,et al.  Cow’s milk as a dietary source of equol and phenolic antioxidants: differential distribution in the milk aqueous and lipid fractions , 2014 .

[76]  M. Arasu,et al.  Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. , 2014, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[77]  J. Guerrero-Beltrán,et al.  Total phenolics and antioxidant activity of Piper auritum and Porophyllum ruderale. , 2014, Food chemistry.

[78]  W. Kerner,et al.  Definition, classification and diagnosis of diabetes mellitus. , 2014, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association.

[79]  Cristóbal N. Aguilar,et al.  Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L. , 2014 .

[80]  I. Alli,et al.  Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. , 2013, Food chemistry.

[81]  H. Purnomo,et al.  Proximate, Total Phenolic, Antioxidant Activity and Amino Acids Profile of Bali Indigenous Chicken, Spent Laying Hen and Broiler Breast Fillet , 2013 .

[82]  A. Rodriguez-Mateos,et al.  Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. , 2013, Antioxidants & redox signaling.

[83]  K. Selim,et al.  Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts , 2013 .

[84]  T. Beta,et al.  Food Sources of Phenolics Compounds , 2013 .

[85]  Gilberto Mercado-Mercado,et al.  [Polyphenolic compounds and antioxidant capacity of typically consumed species in Mexico]. , 2013, Nutricion hospitalaria.

[86]  K. Msaada,et al.  Comparison of Different Extraction Methods for the Determination of Essential oils and Related Compounds from Coriander (Coriandrum sativum L.). , 2012, Acta chimica Slovenica.

[87]  M. Viuda‐Martos,et al.  In vitro Antioxidant and Antibacterial Activities of Extracts from Annatto (Bixa orellana L.) Leaves and Seeds , 2012 .

[88]  F. Anwar,et al.  Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). , 2012, Acta scientiarum polonorum. Technologia alimentaria.

[89]  P. Shi,et al.  Phenolic content and antioxidant activity of wine grapes and table grapes , 2012 .

[90]  N. Yang,et al.  Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms. , 2012, The Journal of nutritional biochemistry.

[91]  B. Spiegelman,et al.  A PGC1α-dependent myokine that drives browning of white fat and thermogenesis , 2012, Nature.

[92]  M. Ruth A PGC1–α–dependent myokine that drives brown–fat–like development of white fat and thermogenesis , 2012 .

[93]  I. Chung,et al.  In vitro antioxidant activity, total phenolics and flavonoids from celery (Apium graveolens) leaves , 2011 .

[94]  Hua Wang,et al.  Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province , 2011 .

[95]  G. Sandoval,et al.  Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants , 2011 .

[96]  V. Alvárez,et al.  Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits , 2011 .

[97]  F. Mansilla,et al.  Changes in Phenolic Compounds in Garlic (Allium sativum L.) Owing to the Cultivar and Location of Growth , 2011, Plant foods for human nutrition.

[98]  Martín Gerardo Rodríguez,et al.  Potencial nutracéutico de componentes bioactivos presentes en huitlacoche de la zona centro de México , 2011 .

[99]  Jie Chen,et al.  Antioxidant capacity and major phenolic compounds of spices commonly consumed in China , 2011 .

[100]  S. Qian,et al.  Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. , 2011, Journal of agricultural and food chemistry.

[101]  A. Heuberger,et al.  Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice , 2010, PloS one.

[102]  H. Jiménez-Islas,et al.  Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.) , 2010 .

[103]  O. Saavedra,et al.  Radicales libres y su papel en las enfermedades crónico-degenerativas , 2010 .

[104]  Russell Keast,et al.  Biological Activities of Phenolic Compounds Present in Virgin Olive Oil , 2010, International journal of molecular sciences.

[105]  Xiang‐Dong Wang,et al.  Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. , 2009, Journal of agricultural and food chemistry.

[106]  F. Romo,et al.  Antioxidant activity, bioactive polyphenols in Mexican goats' milk cheeses on summer grazing , 2009, Journal of Dairy Research.

[107]  K. Parkin,et al.  Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize , 2009 .

[108]  M. Ebrahimzadeh,et al.  Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. , 2009, Pakistan journal of pharmaceutical sciences.

[109]  G. Yen,et al.  The protective effect of Opuntia dillenii Haw fruit against low-density lipoprotein peroxidation and its active compounds , 2008 .

[110]  T. L. C. Oldoni,et al.  Actividad antioxidante y compuestos fenólicos en infusiones herbarias consumidas en Brasil , 2008 .

[111]  Chin-Lin Hsu,et al.  Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. , 2008, Molecular nutrition & food research.

[112]  F. Visioli,et al.  Phenolic glycosides from Foeniculum vulgare fruit and evaluation of antioxidative activity. , 2007, Phytochemistry.

[113]  M. Muchuweti,et al.  Phenolic Composition and Antioxidant Properties of Some Spices , 2007 .

[114]  Baojun Xu,et al.  A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. , 2007, Journal of food science.

[115]  J. Blumberg,et al.  A Review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.) , 2006, Phytotherapy research : PTR.

[116]  Adriana Farah,et al.  Phenolic compounds in coffee , 2006 .

[117]  M. Charles,et al.  Antioxidant Capacity and Phenolic Content of Selected Strawberry Genotypes , 2005 .

[118]  A. Cederbaum,et al.  A high‐fat diet leads to the progression of non‐alcoholic fatty liver disease in obese rats , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[119]  Ilhami Gülçin,et al.  The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds , 2005, International journal of food sciences and nutrition.

[120]  Simón Barquera,et al.  Nutrition transition in Mexico and in other Latin American countries. , 2004, Nutrition reviews.

[121]  Y. Hamauzu,et al.  Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.) , 2004 .

[122]  Xianzhong Wu,et al.  Antioxidant activity of apple peels. , 2003, Journal of agricultural and food chemistry.

[123]  C. Hasler Functional foods: benefits, concerns and challenges-a position paper from the american council on science and health. , 2002, The Journal of nutrition.

[124]  K. Asayama,et al.  Effect of obesity and troglitazone on expression of two glutathione peroxidases: Cellular and extracellular types in serum, kidney and adipose tissue , 2001, Free radical research.

[125]  L Bravo,et al.  Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. , 2009, Nutrition reviews.