Quantum-inspired Machine Learning on high-energy physics data

One of the most challenging big data problems in high energy physics is the analysis and classification of the data produced by the Large Hadron Collider at CERN. Recently, machine learning techniques have been employed to tackle such challenges, which, despite being very effective, rely on classification schemes that are hard to interpret. Here, we introduce and apply a quantum-inspired machine learning technique and, exploiting tree tensor networks, we show how to efficiently classify b-jet events in proton-proton collisions at LHCb and to interpret the classification results. In particular, we show how to select important features and adapt the network geometry based on information acquired in the learning process. Moreover, the tree tensor network can be adapted for optimal precision or fast response in time without the need for repeating the learning process. This paves the way to high-frequency real-time applications as needed for current and future LHC event classification to trigger events at the tens of MHz scale.

[1]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[2]  Elina Robeva,et al.  Duality of Graphical Models and Tensor Networks , 2017, Information and Inference: A Journal of the IMA.

[3]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[4]  Ben Calderhead,et al.  Advances in Neural Information Processing Systems 29 , 2016 .

[5]  D. Lange,et al.  The EvtGen particle decay simulation package , 2001 .

[6]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[7]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[8]  S. Amerio,et al.  First measurement of the charge asymmetry in beauty-quark pair production. , 2014, Physical review letters.

[9]  Sukhwinder Singh,et al.  Global symmetries in tensor network states: Symmetric tensors versus minimal bond dimension , 2013, 1307.1522.

[10]  Adam Zalcman,et al.  TensorNetwork: A Library for Physics and Machine Learning , 2019, ArXiv.

[11]  Alexander Novikov,et al.  Exponential Machines , 2017, ICLR.

[12]  Martin Ganahl,et al.  TensorNetwork on TensorFlow: A Spin Chain Application Using Tree Tensor Networks , 2019, ArXiv.

[13]  M. Dorigo,et al.  Identification of beauty and charm quark jets at LHCb , 2015, 1504.07670.

[14]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[15]  S. M. Etesami,et al.  EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) , 2015 .

[16]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[17]  Marcello Dalmonte,et al.  Fractional quantum Hall effect in the interacting Hofstadter model via tensor networks , 2017 .

[18]  E. al.,et al.  Measurement of Bd mixing using opposite-side flavor tagging , 2006, hep-ex/0609034.

[19]  J. Ignacio Cirac,et al.  From Probabilistic Graphical Models to Generalized Tensor Networks for Supervised Learning , 2018, IEEE Access.

[20]  M. Schwartz,et al.  Jet charge and machine learning , 2018, Journal of High Energy Physics.

[21]  T. Koi,et al.  Geant 4 Developments and Applications , 2013 .

[22]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[23]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[24]  E. Miles Stoudenmire,et al.  Learning relevant features of data with multi-scale tensor networks , 2017, ArXiv.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[27]  Ivan Oseledets,et al.  Expressive power of recurrent neural networks , 2017, ICLR.

[28]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[29]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[30]  S. Montangero,et al.  Lattice gauge theory simulations in the quantum information era , 2016, 1602.03776.

[31]  S. Miglioranzi,et al.  The LHCb Simulation Application, Gauss: Design, Evolution and Experience , 2011 .

[32]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[33]  J. Benedetto The Journal of Fourier Analysis and Applications , 2020 .

[34]  Amnon Shashua,et al.  Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design , 2017, ICLR.

[35]  Zihao Jiang,et al.  Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment , 2017 .

[36]  L. Mir,et al.  The ALEPH Collaboration , 1996 .

[37]  Andrew S. Darmawan,et al.  Restricted Boltzmann machine learning for solving strongly correlated quantum systems , 2017, 1709.06475.

[38]  S. Montangero,et al.  Two-Dimensional Quantum-Link Lattice Quantum Electrodynamics at Finite Density , 2019, Physical Review X.

[39]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[40]  Dong-Ling Deng,et al.  Machine Learning Topological States , 2016, 1609.09060.

[41]  I. McCulloch From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.

[42]  D. Jaschke,et al.  The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems , 2017, SciPost Physics Lecture Notes.

[43]  S. Montangero,et al.  On the descriptive power of Neural-Networks as constrained Tensor Networks with exponentially large bond dimension , 2019, SciPost Physics Core.

[44]  Krzysztof Cichy,et al.  Review on novel methods for lattice gauge theories. , 2019, Reports on progress in physics. Physical Society.

[45]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[46]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[47]  Benni Reznik,et al.  Simulating lattice gauge theories within quantum technologies , 2019 .

[48]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[49]  David J. Schwab,et al.  Supervised Learning with Tensor Networks , 2016, NIPS.

[50]  J. Chen,et al.  Equivalence of restricted Boltzmann machines and tensor network states , 2017, 1701.04831.

[51]  → D−π,et al.  The LHCb Collaboration , 2011 .

[52]  L. Gouskos,et al.  The Machine Learning landscape of top taggers , 2019, SciPost Physics.

[53]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[54]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[55]  Gang Su,et al.  Machine learning by unitary tensor network of hierarchical tree structure , 2017, New Journal of Physics.

[56]  W. Marsden I and J , 2012 .

[57]  Lu-Ming Duan,et al.  Machine learning meets quantum physics , 2019, Physics Today.

[58]  Tommaso Calarco,et al.  Unconstrained tree tensor network: An adaptive gauge picture for enhanced performance , 2014, 1406.2666.

[59]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[60]  B. Nachman,et al.  Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning , 2017, Physics Reports.

[61]  M. Campanelli,et al.  Jet substructure at the Large Hadron Collider , 2018, Reviews of Modern Physics.

[62]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[63]  D. Colella Journal of Fourier Analysis and Applications , 2017 .

[64]  Chris P. Barnes,et al.  The LHCb detector at the LHC , 2008 .