Induction of Internal Capacitance Effect in Performance Measurement of OPV (Organic Photovoltaic) Device by RTOSM (Real-Time One-Sweep Method)

The advantages of OPV (organic photovoltaic) are low cost, little pollution and flexible. But challenge for OPV manufacture still is lacking of accurately performance measurement due to capacitance issue. Firstly, characterization of OPV requires considering the slowly temporal response due to capacitance effect, and the relative I-V (current-voltage) curves are strongly dependent on the voltage sweep direction, even for the sweep time only in few seconds or less. Secondly, the IPCE (incident photon-to-electron conversion efficiency) also shows the slowly temporal response due to capacitance effect and is dependent on the wavelength of the incident light. Furthermore, the related features for measuring I-V curves are more sensitive with temperature due to non-linear characteristics issue, but current IPCE spectra of OPV are similar to that happened in conventional crystalline Si or amorphous silicon devices. In this work, we developed a RTOSM (real-time one-sweep method) applied both in I-V and IPCE to analysis different electronic transport materials, and result showed this new approach proposed a good way to slow down testing time and having better accuracy for OPV measurement by eliminating acceptance effect instantly.