List decoding reed-solomon, algebraic-geometric, and gabidulin subcodes up to the singleton bound

We consider Reed-Solomon (RS) codes whose evaluation points belong to a subfield, and give a linear-algebraic list decoding algorithm that can correct a fraction of errors approaching the code distance, while pinning down the candidate messages to a well-structured affine space of dimension a constant factor smaller than the code dimension. By pre-coding the message polynomials into a subspace-evasive set, we get a Monte Carlo construction of a subcode of Reed-Solomon codes that can be list decoded from a fraction (1-R-ε) of errors in polynomial time (for any fixed ε > 0) with a list size of O(1/ε). Our methods extend to algebraic-geometric (AG) codes, leading to a similar claim over constant-sized alphabets. This matches parameters of recent results based on folded variants of RS and AG codes. but our construction here gives subcodes of Reed-Solomon and AG codes themselves (albeit with restrictions on the evaluation points). Further, the underlying algebraic idea also extends nicely to Gabidulin's construction of rank-metric codes based on linearized polynomials. This gives the first construction of positive rate rank-metric codes list decodable beyond half the distance, and in fact gives codes of rate R list decodable up to the optimal (1-R-ε) fraction of rank errors. A similar claim holds for the closely related subspace codes studied by Koetter and Kschischang. We introduce a new notion called subspace designs as another way to pre-code messages and prune the subspace of candidate solutions. Using these, we also get a deterministic construction of a polynomial time list decodable subcode of RS codes. By using a cascade of several subspace designs, we extend our approach to AG codes, which gives the first deterministic construction of an algebraic code family of rate R with efficient list decoding from 1-R-ε fraction of errors over an alphabet of constant size (that depends only on ε). The list size bound is almost a constant (governed by log* (block length)), and the code can be constructed in quasi-polynomial time.

[1]  Venkatesan Guruswami Cyclotomic function fields, Artin–Frobenius automorphisms, and list error correction with optimal rate , 2010 .

[2]  Hessam Mahdavifar List-decoding of subspace codes and rank-metric codes up to Singleton bound , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[3]  Frank R. Kschischang,et al.  Fast encoding and decoding of Gabidulin codes , 2009, 2009 IEEE International Symposium on Information Theory.

[4]  Reihaneh Safavi-Naini,et al.  Linear authentication codes: bounds and constructions , 2001, IEEE Trans. Inf. Theory.

[5]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[6]  Venkatesan Guruswami,et al.  Correlated Algebraic-Geometric Codes: Improved List Decoding over Bounded Alphabets , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[7]  Madhu Sudan,et al.  Reconstructing curves in three (and higher) dimensional space from noisy data , 2003, STOC '03.

[8]  Venkatesan Guruswami,et al.  List decoding subspace codes from insertions and deletions , 2012, ITCS '12.

[9]  Venkatesan Guruswami,et al.  Folded codes from function field towers and improved optimal rate list decoding , 2012, STOC '12.

[10]  Martin Bossert,et al.  Maximum rank distance codes as space-time codes , 2003, IEEE Trans. Inf. Theory.

[11]  Pierre Loidreau,et al.  A Welch-Berlekamp Like Algorithm for Decoding Gabidulin Codes , 2005, WCC.

[12]  Venkatesan Guruswami,et al.  Limits to List Decoding Reed-Solomon Codes , 2006, IEEE Trans. Inf. Theory.

[13]  Jaikumar Radhakrishnan,et al.  Subspace Polynomials and Limits to List Decoding of Reed–Solomon Codes , 2010, IEEE Transactions on Information Theory.

[14]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[15]  Aggelos Kiayias,et al.  Decoding interleaved Reed-Solomon codes over noisy channels , 2007, Theor. Comput. Sci..

[16]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[17]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory, Ser. A.

[18]  Shachar Lovett,et al.  Subspace Evasive Sets , 2011, Electron. Colloquium Comput. Complex..

[19]  Kenneth W. Shum,et al.  A low-complexity algorithm for the construction of algebraic-geometric codes better than the Gilbert-Varshamov bound , 2001, IEEE Trans. Inf. Theory.

[20]  Pierre Loidreau Designing a Rank Metric Based McEliece Cryptosystem , 2010, PQCrypto.

[21]  Antonia Wachter-Zeh Bounds on List Decoding Gabidulin Codes , 2012, ArXiv.

[22]  Venkatesan Guruswami,et al.  Explicit subspace designs , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[23]  Alexander Vardy,et al.  Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[24]  Ernst M. Gabidulin A Fast Matrix Decoding Algorithm for Rank-Error-Correcting Codes , 1991, Algebraic Coding.

[25]  Venkatesan Guruswami,et al.  Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.

[26]  Avraham Ben-Aroya,et al.  A Note on Subspace Evasive Sets , 2012, Chicago J. Theor. Comput. Sci..

[27]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[28]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[29]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[30]  Thomas Johansson,et al.  Authentication codes for nontrusting parties obtained from rank metric codes , 1995, Des. Codes Cryptogr..

[31]  Swastik Kopparty List-Decoding Multiplicity Codes , 2012, Theory Comput..

[32]  Simon Plass,et al.  Error and Erasure Decoding of Rank-Codes with a Modified Berlekamp-Massey Algorithm , 2004 .

[33]  Alexander Vardy,et al.  Algebraic list-decoding on the operator channel , 2010, 2010 IEEE International Symposium on Information Theory.

[34]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[35]  Daniel Lazard,et al.  Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..

[36]  Venkatesan Guruswami,et al.  Linear-Algebraic List Decoding for Variants of Reed–Solomon Codes , 2013, IEEE Transactions on Information Theory.

[37]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[38]  Ernst M. Gabidulin,et al.  Ideals over a Non-Commutative Ring and thier Applications in Cryptology , 1991, EUROCRYPT.

[39]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[40]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[41]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[42]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..