Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins.

[1]  Kenneth R. Spring,et al.  Video Microscopy: The Fundamentals , 1986 .

[2]  D. Taylor,et al.  Basic fluorescence microscopy. , 1989, Methods in cell biology.

[3]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[4]  D. Agard,et al.  Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. , 1990, Biophysical journal.

[5]  S. Gibson,et al.  Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[6]  D N Mastronarde,et al.  Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle , 1995, The Journal of cell biology.

[7]  G. Patterson,et al.  Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. , 1997, Biophysical journal.

[8]  J. Lippincott-Schwartz,et al.  Kinetic Analysis of Secretory Protein Traffic and Characterization of Golgi to Plasma Membrane Transport Intermediates in Living Cells , 1998, The Journal of cell biology.

[9]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[10]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[11]  D. Koshland,et al.  Cse4p Is a Component of the Core Centromere of Saccharomyces cerevisiae , 1998, Cell.

[12]  J Waters,et al.  A high-resolution multimode digital microscope system. , 1998, Methods in cell biology.

[13]  D. Piston,et al.  Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy. , 1998, The Biological bulletin.

[14]  G. Patterson,et al.  Quantitative imaging of the green fluorescent protein (GFP). , 1999, Methods in cell biology.

[15]  S. Shaw,et al.  Using green fluorescent protein fusion proteins to quantitate microtubule and spindle dynamics in budding yeast. , 1999, Methods in cell biology.

[16]  J. McIntosh,et al.  High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. , 1999, Molecular biology of the cell.

[17]  Brakenhoff,et al.  Fluorescence photobleaching‐based image standardization for fluorescence microscopy , 2000, Journal of microscopy.

[18]  A Miyawaki,et al.  Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. , 2000, Nucleic acids research.

[19]  T. Kues,et al.  Visualization and tracking of single protein molecules in the cell nucleus. , 2001, Biophysical journal.

[20]  J. Lippincott-Schwartz,et al.  Studying protein dynamics in living cells , 2001, Nature Reviews Molecular Cell Biology.

[21]  E. Salmon,et al.  Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. , 2001, Molecular biology of the cell.

[22]  Takeharu Nagai,et al.  Shift anticipated in DNA microarray market , 2002, Nature Biotechnology.

[23]  Timothy J Mitchison,et al.  Single-Molecule Speckle Analysis of Actin Filament Turnover in Lamellipodia , 2002, Science.

[24]  Jason R Swedlow,et al.  Measuring tubulin content in Toxoplasma gondii: A comparison of laser-scanning confocal and wide-field fluorescence microscopy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[26]  T. Misteli,et al.  Quantitation of GFP-fusion proteins in single living cells. , 2002, Journal of structural biology.

[27]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[28]  J. Tytell,et al.  Structure, function, and regulation of budding yeast kinetochores. , 2003, Annual review of cell and developmental biology.

[29]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[30]  S. Biggins,et al.  Proteolysis Contributes to the Exclusive Centromere Localization of the Yeast Cse4/CENP-A Histone H3 Variant , 2004, Current Biology.

[31]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[32]  Atsushi Miyawaki,et al.  Fluorescent proteins in a new light , 2004, Nature Biotechnology.

[33]  G J Brakenhoff,et al.  Image calibration in fluorescence microscopy , 2004, Journal of microscopy.

[34]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[35]  Takeharu Nagai,et al.  Engineering fluorescent proteins. , 2005, Advances in biochemical engineering/biotechnology.

[36]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[37]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[38]  Esther Rheinbay,et al.  Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins , 2006, Genome Biology.

[39]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[40]  Konstantin A Lukyanov,et al.  Fluorescent proteins as a toolkit for in vivo imaging. , 2005, Trends in biotechnology.

[41]  C. Pesce,et al.  Regulated cell-to-cell variation in a cell-fate decision system , 2005, Nature.

[42]  Peter K Sorger,et al.  Molecular organization of the Ndc80 complex, an essential kinetochore component. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Thomas D Pollard,et al.  Counting Cytokinesis Proteins Globally and Locally in Fission Yeast , 2005, Science.

[44]  P. Schwille,et al.  Fluorescence correlation spectroscopy with autofluorescent proteins. , 2005, Advances in biochemical engineering/biotechnology.

[45]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[46]  X. Xie,et al.  Probing Gene Expression in Live Cells, One Protein Molecule at a Time , 2006, Science.

[47]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[48]  G. Wadhams,et al.  Stoichiometry and turnover in single, functioning membrane protein complexes , 2006, Nature.

[49]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[50]  X. Xie,et al.  Living Cells as Test Tubes , 2006, Science.

[51]  E. Salmon,et al.  Molecular architecture of a kinetochore–microtubule attachment site , 2006, Nature Cell Biology.

[52]  Uri Alon,et al.  A fluctuation method to quantify in vivo fluorescence data. , 2006, Biophysical journal.

[53]  Joachim Goedhart,et al.  UvA-DARE ( Digital Academic Repository ) Optimization of fluorescent proteins for novel quantitative multiparameter microscopy approaches , 2007 .

[54]  Petra Schwille,et al.  Fluorescence correlation spectroscopy and its potential for intracellular applications , 2007, Cell Biochemistry and Biophysics.