Studies of Black Diamond as an antibacterial surface for Gram Negative bacteria: the interplay between chemical and mechanical bactericidal activity

[1]  P. May,et al.  Studies of black silicon and black diamond as materials for antibacterial surfaces. , 2018, Biomaterials science.

[2]  E. Ukraintsev,et al.  Anti-adhesive properties of nanocrystalline diamond films against Escherichia coli bacterium: Influence of surface termination and cultivation medium , 2018 .

[3]  Kateryna Bazaka,et al.  Review on the Antimicrobial Properties of Carbon Nanostructures , 2017, Materials.

[4]  Denver P. Linklater,et al.  Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces , 2017, Nanotechnology.

[5]  K. Ostrikov,et al.  Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli. , 2017, ACS applied materials & interfaces.

[6]  T. A. Silva,et al.  Diamond-coated 'black silicon' as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces. , 2016, Journal of materials chemistry. B.

[7]  Eoin Casey,et al.  Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features. , 2016, ACS applied materials & interfaces.

[8]  S. M. Hossain,et al.  Black silicon solar cell: analysis optimization and evolution towards a thinner and flexible future , 2016, Nanotechnology.

[9]  Katharina Maniura-Weber,et al.  Antibacterial Au nanostructured surfaces. , 2016, Nanoscale.

[10]  Xinlei Li Bactericidal mechanism of nanopatterned surfaces. , 2016, Physical chemistry chemical physics : PCCP.

[11]  Lirong Zhang,et al.  Theoretical study on the bactericidal nature of nanopatterned surfaces. , 2015, Journal of theoretical biology.

[12]  A. Yee,et al.  Nanopatterned polymer surfaces with bactericidal properties. , 2015, Biointerphases.

[13]  M. Ryadnov,et al.  Cicada-inspired cell-instructive nanopatterned arrays , 2014, Scientific Reports.

[14]  A. Fouras,et al.  CORRIGENDUM: Non-invasive airway health assessment: Synchrotron imaging reveals effects of rehydrating treatments on mucociliary transit in-vivo , 2014, Scientific Reports.

[15]  W. Milne,et al.  Porous boron-doped diamond/carbon nanotube electrodes. , 2014, ACS applied materials & interfaces.

[16]  Saulius Juodkazis,et al.  Bactericidal activity of black silicon , 2013, Nature Communications.

[17]  E. Levänen,et al.  Superhydrophobic surfaces for the reduction of bacterial adhesion , 2013 .

[18]  Elena P Ivanova,et al.  Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. , 2013, Biophysical journal.

[19]  Hao-Chih Yuan,et al.  An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. , 2012, Nature nanotechnology.

[20]  Elena P Ivanova,et al.  Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. , 2012, Small.

[21]  S. Kannan,et al.  Update on bacterial nosocomial infections. , 2012, European review for medical and pharmacological sciences.

[22]  G. Morell,et al.  Bactericide and bacterial anti-adhesive properties of the nanocrystalline diamond surface , 2012 .

[23]  F. Teixeira,et al.  Termination of diamond surfaces with hydrogen, oxygen and fluorine using a small, simple plasma gun , 2010 .

[24]  Jacob T. Robinson,et al.  Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells , 2010, Proceedings of the National Academy of Sciences.

[25]  Christoph E. Nebel,et al.  Vertically aligned diamond nanowires: Fabrication, characterization, and application for DNA sensing , 2009 .

[26]  Peidong Yang,et al.  Interfacing silicon nanowires with mammalian cells. , 2007, Journal of the American Chemical Society.

[27]  D. Davies,et al.  Understanding biofilm resistance to antibacterial agents , 2003, Nature Reviews Drug Discovery.

[28]  M. W. Reij,et al.  Development of a Standard Test To Assess the Resistance of Staphylococcus aureus Biofilm Cells to Disinfectants , 2002, Applied and Environmental Microbiology.

[29]  R. Donlan,et al.  Biofilms: Microbial Life on Surfaces , 2002, Emerging infectious diseases.

[30]  J. Karlowsky,et al.  Trends in Antimicrobial Resistance among Urinary Tract Infection Isolates of Escherichia coli from Female Outpatients in the United States , 2002, Antimicrobial Agents and Chemotherapy.

[31]  P. May Diamond thin films: a 21st-century material , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[33]  P. Stewart,et al.  Nonuniform spatial patterns of respiratory activity within biofilms during disinfection , 1995, Applied and environmental microbiology.

[34]  J. Holloway,et al.  Electrospray Deposition of Diamond Nanoparticle Nucleation Layers for Subsequent CVD Diamond Growth , 2009 .

[35]  J. Ghigo,et al.  Escherichia coli biofilms. , 2008, Current topics in microbiology and immunology.