A Characterization of Global Entanglement
暂无分享,去创建一个
Peter J. Love | Alec Maassen van den Brink | Alexandre M. Zagoskin | E. Il'ichev | M. Grajcar | A. Yu. Smirnov | Mohammad H. S. Amin | A. Izmalkov
[1] Goong Chen,et al. Mathematics of Quantum Computation , 2002 .
[2] Timothy F. Havel. The Real Density Matrix , 2002, Quantum Inf. Process..
[3] A. J. Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions , 2003, quant-ph/0310137.
[4] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[5] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[6] G. Vidal. On the characterization of entanglement , 1998 .
[7] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[8] A. Sudbery,et al. Multipartite generalization of the Schmidt decomposition , 2000, quant-ph/0006125.
[9] Method for direct observation of coherent quantum oscillations in a superconducting phase qubit , 2002, cond-mat/0208143.
[10] Gilles Brassard,et al. Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.
[11] D. Meyer,et al. Global entanglement in multiparticle systems , 2001, quant-ph/0108104.
[12] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[13] He-Shan Song,et al. Global entanglement for multipartite quantum states , 2006, quant-ph/0603038.
[14] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[15] P. Grangier,et al. Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .
[16] A. Sudbery,et al. Non-local properties of multi-particle density matrices , 1998, quant-ph/9801076.
[17] A. Osterloh,et al. Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.
[18] Hans-J. Briegel,et al. Local invariants for multi-partite entangled states allowing for a simple entanglement criterion , 2004, Quantum Inf. Comput..
[19] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[20] A. Osterloh,et al. ENTANGLEMENT MONOTONES AND MAXIMALLY ENTANGLED STATES IN MULTIPARTITE QUBIT SYSTEMS , 2005, quant-ph/0506073.
[21] H. Meyer,et al. Four-qubit device with mixed couplings. , 2005, Physical review letters.
[22] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[23] Nolan R. Wallach. The Hilbert Series of Measures of Entanglement for 4 Qubits , 2005 .
[24] Christian Kurtsiefer,et al. Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.