Analysis of a Time-Stepping Scheme for Time Fractional Diffusion Problems with Nonsmooth Data
暂无分享,去创建一个
Xiaoping Xie | Hao Luo | Binjie Li | Xiaoping Xie | Binjie Li | Hao Luo
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] Jiwei Zhang,et al. Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain , 2016, J. Comput. Phys..
[3] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .
[4] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[5] Fawang Liu,et al. Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..
[6] J. Pasciak,et al. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.
[7] William McLean,et al. Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..
[8] William McLean,et al. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.
[9] Kassem Mustapha,et al. Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .
[10] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[11] Fawang Liu,et al. Finite element approximation for a modified anomalous subdiffusion equation , 2011 .
[12] William McLean,et al. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.
[13] Fawang Liu,et al. A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..
[14] Xiaoping Xie,et al. A space-time finite element method for fractional wave problems , 2018, Numerical Algorithms.
[15] Zhibo Wang,et al. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..
[16] George E. Karniadakis,et al. Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..
[17] V. Thomée,et al. Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .
[18] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[19] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[20] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[21] I. Podlubny. Fractional differential equations , 1998 .
[22] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[23] Xiaoping Xie,et al. A Time-Spectral Algorithm for Fractional Wave Problems , 2017, Journal of Scientific Computing.
[24] K. Diethelm. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .
[25] Yang Zhang,et al. A finite difference method for fractional partial differential equation , 2009, Appl. Math. Comput..
[26] George E. Karniadakis,et al. Exponentially accurate spectral and spectral element methods for fractional ODEs , 2014, J. Comput. Phys..
[27] Fawang Liu,et al. The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..
[28] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[29] Kassem Mustapha,et al. Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.
[30] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[31] D. Schötzau,et al. Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .
[32] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..
[33] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[34] V. Thomée,et al. Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .
[35] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[36] Eduardo Cuesta,et al. Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..
[37] V. Ervin,et al. Variational formulation for the stationary fractional advection dispersion equation , 2006 .
[38] Santos B. Yuste,et al. Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..
[39] Zhi-Zhong Sun,et al. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..
[40] Kassem Mustapha,et al. A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..
[41] George E. Karniadakis,et al. Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..
[42] Yin Yang,et al. Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis , 2017, Comput. Math. Appl..
[43] William McLean,et al. Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..
[44] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[45] William McLean,et al. Discontinuous Galerkin method for an evolution equation with a memory term of positive type , 2009, Math. Comput..