Analysis of a Time-Stepping Scheme for Time Fractional Diffusion Problems with Nonsmooth Data

This paper establishes the convergence of a time-steeping scheme for time fractional diffusion problems with nonsmooth data. We first analyze the regularity of the model problem with nonsmooth data, and then prove that the time-steeping scheme possesses optimal convergence rates in $ L^2(0,T;L^2(\Omega)) $-norm and $ L^2(0,T;H_0^1(\Omega)) $-norm with respect to the regularity of the solution. Finally, numerical results are provided to verify the theoretical results.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Jiwei Zhang,et al.  Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain , 2016, J. Comput. Phys..

[3]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[4]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[5]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[6]  J. Pasciak,et al.  Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.

[7]  William McLean,et al.  Time-stepping error bounds for fractional diffusion problems with non-smooth initial data , 2014, J. Comput. Phys..

[8]  William McLean,et al.  Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.

[9]  Kassem Mustapha,et al.  Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation , 2012 .

[10]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[11]  Fawang Liu,et al.  Finite element approximation for a modified anomalous subdiffusion equation , 2011 .

[12]  William McLean,et al.  Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.

[13]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[14]  Xiaoping Xie,et al.  A space-time finite element method for fractional wave problems , 2018, Numerical Algorithms.

[15]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[16]  George E. Karniadakis,et al.  Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..

[17]  V. Thomée,et al.  Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .

[18]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[19]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[20]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[21]  I. Podlubny Fractional differential equations , 1998 .

[22]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[23]  Xiaoping Xie,et al.  A Time-Spectral Algorithm for Fractional Wave Problems , 2017, Journal of Scientific Computing.

[24]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[25]  Yang Zhang,et al.  A finite difference method for fractional partial differential equation , 2009, Appl. Math. Comput..

[26]  George E. Karniadakis,et al.  Exponentially accurate spectral and spectral element methods for fractional ODEs , 2014, J. Comput. Phys..

[27]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[28]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[29]  Kassem Mustapha,et al.  Time-stepping discontinuous Galerkin methods for fractional diffusion problems , 2014, Numerische Mathematik.

[30]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[31]  D. Schötzau,et al.  Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations , 2014 .

[32]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[33]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[34]  V. Thomée,et al.  Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .

[35]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[36]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[37]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[38]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[39]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[40]  Kassem Mustapha,et al.  A Discontinuous Petrov-Galerkin Method for Time-Fractional Diffusion Equations , 2014, SIAM J. Numer. Anal..

[41]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[42]  Yin Yang,et al.  Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis , 2017, Comput. Math. Appl..

[43]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[44]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[45]  William McLean,et al.  Discontinuous Galerkin method for an evolution equation with a memory term of positive type , 2009, Math. Comput..