Collective Motion, Sensor Networks, and Ocean Sampling The goal is design and control of optimum trajectories for mobile sensor networks, like a fleet of self-directed underwater gliders that move with ocean currents and sample dynamic ocean variables.

This paper addresses the design of mobile sensor networks for optimal data collection. The development is strongly motivated by the application to adaptive ocean sampling for an autonomous ocean observing and prediction system. A performance metric, used to derive optimal paths for the network of mobile sensors, defines the optimal data set as one which minimizes error in a model estimate of the sampled field. Feedback control laws are presented that stably coordi- nate sensors on structured tracks that have been optimized over a minimal set of parameters. Optimal, closed-loop solu- tions are computed in a number of low-dimensional cases to illustrate the methodology. Robustness of the performance to the influence of a steady flow field on relatively slow-moving mobile sensors is also explored.

[1]  D. C. Webb,et al.  SLOCUM: an underwater glider propelled by environmental energy , 2001 .

[2]  Donald B. Olson,et al.  Multivariate objective analysis of the coastal circulation of Barbados, West Indies: implication for larval transport , 2002 .

[3]  Naomi Ehrich Leonard,et al.  Adaptive Sampling Using Feedback Control of an Autonomous Underwater Glider Fleet , 2003 .

[4]  James G. Bellingham Autonomous Ocean Sampling Networks , 2006 .

[5]  Ben Grocholsky,et al.  Information-Theoretic Control of Multiple Sensor Platforms , 2002 .

[6]  Annalisa Griffa,et al.  Lagrangian Data Assimilation in Multilayer Primitive Equation Ocean Models , 2005 .

[7]  R. Davis,et al.  The autonomous underwater glider "Spray" , 2001 .

[8]  Pierre F. J. Lermusiaux,et al.  Uncertainty estimation and prediction for interdisciplinary ocean dynamics , 2006, J. Comput. Phys..

[9]  Naomi Ehrich Leonard,et al.  Generating contour plots using multiple sensor platforms , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[10]  R. Cardell-Oliver,et al.  Field testing a wireless sensor network for reactive environmental monitoring [soil moisture measurement] , 2004, Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference, 2004..

[11]  C. C. Eriksen,et al.  Seaglider: a long-range autonomous underwater vehicle for oceanographic research , 2001 .

[12]  Walter F. Dabberdt,et al.  Research Opportunities from Emerging Atmospheric Observing and Modeling Capabilities , 1996 .

[13]  D. Menemenlis Inverse Modeling of the Ocean and Atmosphere , 2002 .

[14]  Pierre F. J. Lermusiaux,et al.  On the mapping of multivariate geophysical fields: Error and variability subspace estimates , 2000 .

[15]  R. S. Bell,et al.  The Meteorological Office analysis correction data assimilation scheme , 1991 .

[16]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[17]  S.C. Shadden,et al.  Optimal trajectory generation in ocean flows , 2005, Proceedings of the 2005, American Control Conference, 2005..

[18]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[19]  A. Mariano,et al.  Assimilation of drifter observations for the reconstruction of the Eulerian circulation field , 2003 .

[20]  L. Gandin Objective Analysis of Meteorological Fields , 1963 .

[21]  F. Bretherton,et al.  A technique for objective analysis and design of oceanographic experiments applied to MODE-73 , 1976 .

[22]  Pierre FJ Lermusiaux On the Mapping of Multivariate Geophysical Fields: Sensitivities to Size, Scales, and Dynamics , 2002 .

[23]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[24]  John C. Kindle,et al.  High resolution modeling and data assimilation in the Monterey Bay area , 2002 .

[25]  E. Buckingham On Physically Similar Systems; Illustrations of the Use of Dimensional Equations , 1914 .

[26]  James G. Bellingham,et al.  Performance metrics for oceanographic surveys with autonomous underwater vehicles , 2001 .

[27]  K. Ide,et al.  Lagrangian data assimilation for point vortex systems , 2002 .

[28]  Francisco P. Chavez,et al.  Observations of upwelling and relaxation events in the northern Monterey Bay during August 2000 , 2005 .

[29]  Andrea L. Bertozzi,et al.  Tracking Environmental Level Sets with Autonomous Vehicles , 2004 .

[30]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[31]  Pierre F. J. Lermusiaux,et al.  Estimation and study of mesoscale variability in the strait of Sicily , 1999 .

[32]  Francisco P. Chavez,et al.  Carbon export and regeneration in the coastal upwelling system of Monterey Bay , 1996 .

[33]  Naomi Ehrich Leonard,et al.  Collective Motion of Self-Propelled Particles: Stabilizing Symmetric Formations on Closed Curves , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[34]  Mark A. Moline,et al.  Bioluminescence Intensity Modeling and Sampling Strategy Optimization , 2005 .

[35]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[36]  Deborah K. Steinberg,et al.  Midwater zooplankton communities on pelagic detritus (giant larvacean houses) in Monterey Bay, California , 1994 .

[37]  Jeffrey D. Paduan,et al.  Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar) , 1996 .

[38]  Calton Pu,et al.  Research challenges in environmental observation and forecasting systems , 2000, MobiCom '00.

[39]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[40]  Paul Chandler,et al.  Autonomous Ocean Sampling Network II (AOSN-II): System Engineering and Project Coordination , 2002 .

[41]  David M. Fratantoni,et al.  UNDERWATER GLIDERS FOR OCEAN RESEARCH , 2004 .

[42]  Joshua Grady Graver,et al.  UNDERWATER GLIDERS: DYNAMICS, CONTROL AND DESIGN , 2005 .

[43]  Pierre F. J. Lermusiaux,et al.  Advanced interdisciplinary data assimilation: filtering and smoothing via error subspace statistical estimation , 2002, OCEANS '02 MTS/IEEE.

[44]  David M. Fratantoni,et al.  Gulf of Aden eddies and their impact on Red Sea Water , 2002 .

[45]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.

[46]  Nicholas M. Patrikalakis,et al.  Adaptive Coupled Physical and Biogeochemical Ocean Predictions: A Conceptual Basis , 2004, International Conference on Computational Science.

[47]  Naomi Ehrich Leonard,et al.  Oscillator Models and Collective Motion: Splay State Stabilization of Self-Propelled Particles , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[48]  Jennifer B. Paduan,et al.  Spatial and temporal dynamics in marine aggregate abundance, sinking rate and flux: Monterey Bay, central California , 1998 .

[49]  Naomi Ehrich Leonard,et al.  Collective motion: bistability and trajectory tracking , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[50]  James G. Bellingham New oceanographic uses of autonomous underwater vehicles , 1997 .

[51]  Pierre F. J. Lermusiaux,et al.  Coupled physical and biogeochemical data-driven simulations of Massachusetts Bay in late summer: real-time and postcruise data assimilation , 2003 .

[52]  A. Robinson,et al.  Data Assimilation via Error Subspace Statistical Estimation.Part I: Theory and Schemes , 1999, Monthly Weather Review.

[53]  Toru Hirawake,et al.  Long‐term variation of surface phytoplankton chlorophyll a in the Southern Ocean during 1965–2002 , 2005 .

[54]  David M. Fratantoni,et al.  Multi-AUV Control and Adaptive Sampling in Monterey Bay , 2006, IEEE Journal of Oceanic Engineering.