Guidelines and the design approach for vertical geothermal heat pump systems: current status and perspective

Geothermal heat pumps are becoming increasingly popular due to their energy efficiency, rising energy prices, and them being a renewable or sustainable form of energy. However, design considerations and the regulatory framework have not advanced at the same pace. This work points to the need for design methods that consider groundwater advection where it is applicable, and a stronger regulatory environment, to ensure the sustainability of the geothermal energy sector. Related standards have been developed in a few countries; comparing them demonstrates some heterogeneity in the approach to the problem, criteria, and thresholds. While variances in thresholds can be geographically driven, synthesizing the criteria is a powerful means to more comprehensive guidelines. In particular, the interaction of heat exchangers with each other and the groundwater is a major concern. This review intends to provide the understanding needed to implement sustainable geothermal systems by highlighting the necessity for advancement of the current approach in design and standards, and providing direction for establishing improved design and standards. Particularly, by putting Canada in the international context, it is oriented to the Canadian audience and offers state of the art knowledge to professionals and authorities for a sustainable growth in this field. Resume : Les pompes achaleur geothermiques deviennent de plus en plus populaires en raison de leur efficacite energetique, de l'augmentation des couts de l'energie, et du fait que ce soit une forme d'energie renouvelable et durable. Cependant, les considerations de conception et le cadre reglementaire n'ont pas evolue ala meme vitesse. Cette etude demontre le besoin de methodes de conception qui considerent l'advection de l'eau souterraine lorsqu'applicable, et d'un environnement reglemen- taire plus fort pour assurer la durabilite du secteur de l'energie geothermique. Des standards ont ete developpes dans quelques pays; leur comparaison demontre quelques heterogeneites dans l'approche du probleme, des criteres et des limites. Puisque les variances entre les limites peuvent etre associees al'emplacement geographique, la synthese des criteres est un moyen efficace d'etablir des directives comprehensives. De facon particuliere, l'interaction des echangeurs de chaleur entre eux et avec l'eau souterraine est une preoccupation majeure. Cette revue de litterature veut offrir la comprehension necessaire pour implanter des systemes geothermiques durables en soulignant le besoin de developpement de l'approche actuelle de conception et de standards, et en offrant une direction pour l'etablissement de concepts et standards ameliores. L'etude positionne le Canada dans le contexte international, ainsi elle est orientee aune audience canadienne et presente l'etat de l'art des connaissances aux professionnels et autorites visant le developpement durable de ce domaine. (Traduit par la Redaction)

[1]  Ryuichi Itoi,et al.  Optimizing the design of large-scale ground-coupled heat pump systems using groundwater and heat transport modeling , 2005 .

[2]  Ryozo Ooka,et al.  Development of a numerical model to predict heat exchange rates for a ground-source heat pump system , 2008 .

[3]  Peter Bayer,et al.  International legal status of the use of shallow geothermal energy , 2010 .

[4]  Johan Claesson,et al.  Conductive heat extraction to a deep borehole: Thermal analyses and dimensioning rules , 1988 .

[5]  Charles B. Andrews,et al.  The Impact of the Use of Heat Pumps on Ground‐Water Temperatures , 1978 .

[6]  M. A. Rosen,et al.  A UNIQUE BOREHOLE THERMAL STORAGE SYSTEM AT UNIVERSITY OF ONTARIO INSTITUTE OF TECHNOLOGY , 2007 .

[7]  T. Lueders,et al.  Effects of thermal energy discharge on shallow groundwater ecosystems. , 2009, FEMS microbiology ecology.

[8]  P. Blum,et al.  Analytical approach to groundwater-influenced thermal response tests of grouted borehole heat exchangers , 2013 .

[9]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[10]  G. M. Reistad,et al.  Direct application of geothermal energy , 1980 .

[11]  Xuedan Zhang,et al.  Ground heat exchanger design subject to uncertainties arising from thermal response test parameter estimation , 2015 .

[12]  C. Lee,et al.  Determination of Groundwater Velocity in Thermal Response Test Analysis , 2009 .

[13]  Tingjun Zhang Influence of the seasonal snow cover on the ground thermal regime: An overview , 2005 .

[14]  John W. Lund,et al.  World-wide direct uses of geothermal energy 2000 , 2001 .

[15]  O. Kolditz,et al.  Coupled groundwater flow and transport : 1. Verification of variable density flow and transport models , 1998 .

[16]  Karl Ochsner,et al.  Geothermal Heat Pumps: A Guide for Planning and Installing , 2007 .

[17]  E. Lavernia,et al.  An experimental investigation , 1992, Metallurgical and Materials Transactions A.

[18]  Allan D. Woodbury,et al.  Urban heat island in the subsurface , 2007 .

[19]  J. Maxwell,et al.  Theory of Heat , 1892 .

[20]  C. Ng,et al.  Centrifuge modelling of heating effects on energy pile performance in saturated sand , 2015 .

[21]  Burkhard Sanner,et al.  PC-programs and modelling for borehole heat exchanger design , 2001 .

[22]  S. Gehlin Thermal response test : method development and evaluation , 2002 .

[23]  Stephen P. Kavanaugh,et al.  Ground Source Heat Pumps : Design of Geothermal Systems for Commercial and Institutional Buildings , 1997 .

[24]  G. Hellström Ground heat storage : thermal analyses of duct storage systems , 1991 .

[25]  Ladislaus Rybach,et al.  GEOTHERMAL (GROUND-SOURCE) HEAT PUMPS A WORLD OVERVIEW , 2004 .

[26]  S. P. Venkateshan Measurements of Temperature , 2015 .

[27]  E. W. Heinonen,et al.  Assessment of antifreeze solutions for ground-source heat pump systems , 1997 .

[28]  Ruggero Bertani,et al.  World geothermal power generation in the period 2001–2005 , 2005 .

[29]  Jiayin Xie,et al.  Thermal performance of borehole heat exchangers in different aquifers: a case study from Shouguang , 2013 .

[30]  Frederic Mishkin Optimizing the Design , 1991 .

[31]  Kirsti Midttømme Norway's Geothermal Energy Situation , 2005 .

[32]  R. Ménot,et al.  Mean recharge times and chemical modelling transfers from shallow groundwater to mineralized thermal waters at Montrond-les-Bains, Eastern Massif Central, France , 2009 .

[33]  Burkhard Sanner,et al.  Ground Source Heat Pumps - Geothermal Energy for Anyone, Anywhere: Current Worldwide Activity , 2005 .

[34]  Allan D. Woodbury,et al.  Thermal sustainability of groundwater-source cooling in Winnipeg, Manitoba , 2005 .

[35]  Jeffrey D. Spitler,et al.  Development of an in-situ system and analysis procedure for measuring ground thermal properties , 2000 .

[36]  Mary P Anderson,et al.  Heat as a Ground Water Tracer , 2005, Ground water.

[37]  Jozsef Hecht-Méndez,et al.  Evaluating MT3DMS for Heat Transport Simulation of Closed Geothermal Systems , 2010, Ground water.

[38]  Ladislaus Rybach,et al.  Current status of ground source heat pumps and underground thermal energy storage in Europe , 2003 .

[39]  Hongxing Yang,et al.  Vertical-borehole ground-coupled heat pumps: A review of models and systems , 2010 .

[40]  Olof Andersson,et al.  AQUIFER THERMAL ENERGY STORAGE (ATES) , 2007 .

[41]  Franklin W. Schwartz,et al.  An experimental investigation of variable density flow and mixing in homogeneous and heterogeneous media , 1990 .

[42]  Björn Palm,et al.  Local Conduction Heat Transfer in U-pipe Borehole Heat Exchangers , 2009 .

[43]  John W. Lund,et al.  Direct application of geothermal energy : 2005 worldwide review , 2005 .

[44]  Janusz Wojtkowiak,et al.  Measurements of temperature distribution in ground , 2001 .

[45]  L. Rybach,et al.  SUSTAINABILITY ASPECTS OF GEOTHERMAL HEAT PUMPS , 2002 .

[46]  M. Reuss,et al.  10 YEARS VDI 4640 - GERMAN GUIDELINES FOR GROUND COUPLED HEAT PUMPS, UTES AND DIRECT THERMAL USE OF THE UNDERGROUND , 2006 .

[47]  Reinhard Jung,et al.  Geothermal Energy Use in Germany , 2007 .

[48]  Wolfram Rühaak,et al.  Finite element modeling of borehole heat exchanger systems: Part 1. Fundamentals , 2011, Comput. Geosci..

[49]  O. J. Zobel,et al.  Heat conduction with engineering, geological, and other applications , 1955 .

[50]  E. Zanchini,et al.  Long-Term Performance of Borehole Heat Exchanger Fields with Groundwater Movement , 2010 .

[51]  Mike Shelton,et al.  Energy Saving Trust , 2013 .

[52]  Wolfram Rühaak,et al.  Finite element modeling of borehole heat exchanger systems: Part 2. Numerical simulation , 2011, Comput. Geosci..

[53]  C. K. Lee,et al.  Computer simulation of borehole ground heat exchangers for geothermal heat pump systems , 2008 .

[54]  Thomas Kohl,et al.  Sustainability of Production from Borehole Heat Exchanger Fields , 2005 .

[55]  R. Al-Khoury,et al.  Efficient finite element formulation for geothermal heating systems. Part I: steady state , 2005 .

[56]  Vice President,et al.  AMERICAN SOCIETY OF HEATING, REFRIGERATION AND AIR CONDITIONING ENGINEERS INC. , 2007 .

[57]  null null,et al.  International Geothermal Association , 1999 .

[58]  R. Schincariol,et al.  Effect of thermal-hydrogeological and borehole heat exchanger properties on performance and impact of vertical closed-loop geothermal heat pump systems , 2014, Hydrogeology Journal.

[59]  Z. Fang,et al.  A finite line‐source model for boreholes in geothermal heat exchangers , 2002 .

[60]  K. Midttømme,et al.  Ground-source heat pumps and underground thermal energy storage: energy for the future , 2008 .

[61]  Georgios A. Florides,et al.  Ground heat exchangers—A review of systems, models and applications , 2007 .

[62]  Z. Fang,et al.  Heat transfer in ground heat exchangers with groundwater advection , 2004 .

[63]  S. Toze,et al.  Influence of groundwater characteristics on the survival of enteric viruses , 2003, Journal of applied microbiology.

[64]  David Banks,et al.  Practical Engineering Geology , 2008 .

[65]  T. Blomberg Heat conduction in two and three dimensions : computer modelling of building physics applications , 1996 .

[66]  Göran Hellström,et al.  System för värme och kyla ur mark : en nulägesbeskrivning , 2001 .

[67]  R. Schincariol,et al.  Thermal plume transport from sand and gravel pits - Potential thermal impacts on cool water streams , 2007 .

[68]  Maoyu Zheng,et al.  Development of a numerical model for the simulation of vertical U-tube ground heat exchangers , 2009 .

[69]  Allan D. Woodbury,et al.  Observed thermal pollution and post-development simulations of low-temperature geothermal systems in Winnipeg, Canada , 2006 .