Scalable approach for high-resolution land cover: a case study in the Mediterranean Basin

[1]  Hugo L. Hammer,et al.  Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence , 2021, Big Data Cogn. Comput..

[2]  Salvatore Praticò,et al.  Comparison and assessment of different object-based classifications using machine learning algorithms and UAVs multispectral imagery: a case study in a citrus orchard and an onion crop , 2021, European Journal of Remote Sensing.

[3]  Saeid Parsian,et al.  Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  Mahdi Hasanlou,et al.  Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples , 2020, ISPRS Journal of Photogrammetry and Remote Sensing.

[5]  Matteo Matteucci,et al.  Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review , 2020, Remote. Sens..

[6]  Giuseppe Modica,et al.  Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees' crowns from UAV multispectral imagery , 2020, Comput. Electron. Agric..

[7]  Lukas W. Lehnert,et al.  Land Cover Classification using Google Earth Engine and Random Forest Classifier - The Role of Image Composition , 2020, Remote. Sens..

[8]  Karen C. Seto,et al.  A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change , 2020 .

[9]  P. Wicaksono,et al.  Analyses of inter-class spectral separability and classification accuracy of benthic habitat mapping using multispectral image , 2020 .

[10]  Yuei-An Liou,et al.  Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations - A Review , 2020, Remote. Sens..

[11]  Nandin-Erdene Tsendbazar,et al.  Copernicus Global Land Cover Layers - Collection 2 , 2020, Remote. Sens..

[12]  Nataliia Kussul,et al.  A workflow for Sustainable Development Goals indicators assessment based on high-resolution satellite data , 2019, Int. J. Digit. Earth.

[13]  Hugh Chen,et al.  From local explanations to global understanding with explainable AI for trees , 2020, Nature Machine Intelligence.

[14]  Giuseppe Modica,et al.  A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[15]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[16]  Maria João Costa,et al.  Validation of ESA Sentinel-2 L2A Aerosol Optical Thickness and Columnar Water Vapour during 2017-2018 , 2019, Remote. Sens..

[17]  Alexis J. Comber,et al.  Considering spatiotemporal processes in big data analysis: Insights from remote sensing of land cover and land use , 2019, Trans. GIS.

[18]  José Francisco Aldana Montes,et al.  BIGOWL: Knowledge centered Big Data analytics , 2019, Expert Syst. Appl..

[19]  Joanne C. White,et al.  Land cover 2.0 , 2018 .

[20]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[21]  M. Gašparović,et al.  The effect of fusing Sentinel-2 bands on land-cover classification , 2018 .

[22]  Pascal Lecomte,et al.  The ESA Climate Change Initiative (CCI): A European contribution to the generation of the Global Climate Observing System , 2017 .

[23]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[24]  Achin Jain,et al.  Comparative Analysis of KNN Algorithm using Various Normalization Techniques , 2017 .

[25]  Baofeng Su,et al.  Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications , 2017, J. Sensors.

[26]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[27]  J. Ndambuki,et al.  Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS , 2017 .

[28]  John J. Sulik,et al.  Spectral considerations for modeling yield of canola , 2016 .

[29]  Jon Atli Benediktsson,et al.  Big Data for Remote Sensing: Challenges and Opportunities , 2016, Proceedings of the IEEE.

[30]  Michael Bock,et al.  System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 , 2015 .

[31]  Perumal Balakrishnan,et al.  Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar , 2015, Ann. GIS.

[32]  Peng Liu,et al.  A survey of remote-sensing big data , 2015, Front. Environ. Sci..

[33]  W. Dierckx,et al.  PROBA-V mission for global vegetation monitoring: standard products and image quality , 2014 .

[34]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[35]  C. Woodcock,et al.  Continuous change detection and classification of land cover using all available Landsat data , 2014 .

[36]  HoonJae Lee,et al.  Efficient and secure Cloud storage for handling big data , 2012, 2012 6th International Conference on New Trends in Information Science, Service Science and Data Mining (ISSDM2012).

[37]  Markus Metz,et al.  GRASS GIS: A multi-purpose open source GIS , 2012, Environ. Model. Softw..

[38]  Sofia Bajocco,et al.  The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study , 2012, Environmental Management.

[39]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[40]  Xianfang Sun,et al.  Despeckling SRTM and other topographic data with a denoising algorithm , 2010 .

[41]  P. Potapov,et al.  Mapping the World's Intact Forest Landscapes by Remote Sensing , 2008 .

[42]  A. Huete,et al.  Development of a two-band enhanced vegetation index without a blue band , 2008 .

[43]  Ralph R. Martin,et al.  Fast and Effective Feature-Preserving Mesh Denoising , 2007, IEEE Transactions on Visualization and Computer Graphics.

[44]  G. Fitzgerald,et al.  Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments , 2006, Precision Agriculture.

[45]  Choh-Man Teng,et al.  Dealing with Data Corruption in Remote Sensing , 2005, IDA.

[46]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[47]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach , 2002 .

[48]  Michael A. Wulder,et al.  Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas , 2002 .

[49]  A. Gitelson,et al.  Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy¶ , 2002, Photochemistry and photobiology.

[50]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[51]  Toby N. Carlson,et al.  The impact of land use — land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective , 2000 .

[52]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[53]  W. Verhoef,et al.  Reconstructing cloudfree NDVI composites using Fourier analysis of time series , 2000 .

[54]  Josep Peñuelas,et al.  Visible and near-infrared reflectance techniques for diagnosing plant physiological status , 1998 .

[55]  N. Flay,et al.  Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil , 1997 .

[56]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[57]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .

[58]  P. Vitousek Beyond Global Warming: Ecology and Global Change , 1994 .

[59]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[60]  Louis R. Iverson,et al.  Applications of satellite remote sensing to forested ecosystems , 1989, Landscape Ecology.

[61]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .

[62]  M. Weiss,et al.  Remote sensing for agricultural applications: A meta-review , 2020 .

[63]  Matthew Rocklin,et al.  Dask: Parallel Computation with Blocked algorithms and Task Scheduling , 2015, SciPy.

[64]  N. H. Ravindranath,et al.  Agriculture, Forestry and Other Land Use (AFOLU) , 2014 .

[65]  Chengzhang Peng,et al.  Building a Cloud Storage Service System , 2011 .

[66]  Xu Han-qiu,et al.  A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI) , 2005, National Remote Sensing Bulletin.

[67]  S. Rivas-martínez Pisos bioclimáticos de España , 1983 .