Discriminating among probability weighting functions using adaptive design optimization

Probability weighting functions relate objective probabilities and their subjective weights, and play a central role in modeling choices under risk within cumulative prospect theory. While several different parametric forms have been proposed, their qualitative similarities make it challenging to discriminate among them empirically. In this paper, we use both simulation and choice experiments to investigate the extent to which different parametric forms of the probability weighting function can be discriminated using adaptive design optimization, a computer-based methodology that identifies and exploits model differences for the purpose of model discrimination. The simulation experiments show that the correct (data-generating) form can be conclusively discriminated from its competitors. The results of an empirical experiment reveal heterogeneity between participants in terms of the functional form, with two models (Prelec-2, Linear-in-Log-Odds) emerging as the most common best-fitting models. The findings shed light on assumptions underlying these models.

[1]  Richard Gonzalez,et al.  Common Consequence Conditions in Decision Making under Risk , 1998 .

[2]  Mark A. Pitt,et al.  Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach , 2013, Manag. Sci..

[3]  B. Jullien,et al.  Estimating Preferences under Risk: The Case of Racetrack Bettors , 2000, Journal of Political Economy.

[4]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[5]  Peter P. Wakker,et al.  Making Descriptive Use of Prospect Theory to Improve the Prescriptive Use of Expected Utility , 2001, Manag. Sci..

[6]  R. Luce,et al.  Reduction Invariance and Prelec's Weighting Functions. , 2001, Journal of mathematical psychology.

[7]  A. Tversky,et al.  Weighing Risk and Uncertainty , 1995 .

[8]  M. Machina "Expected Utility" Analysis without the Independence Axiom , 1982 .

[9]  Colin Camerer,et al.  Violations of the betweenness axiom and nonlinearity in probability , 1994 .

[10]  B. Melenberg,et al.  Estimating Risk Attitudes using Lotteries: A Large Sample Approach , 1999 .

[11]  Hang Zhang,et al.  Ubiquitous Log Odds: A Common Representation of Probability and Frequency Distortion in Perception, Action, and Cognition , 2012, Front. Neurosci..

[12]  P. Fishburn,et al.  Rank- and sign-dependent linear utility models for finite first-order gambles , 1991 .

[13]  Adrian Bruhin,et al.  Viewing the future through a warped lens: Why uncertainty generates hyperbolic discounting , 2010 .

[14]  H. Stott Cumulative prospect theory's functional menagerie , 2006 .

[15]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[16]  J. Ingersoll,et al.  Non-Monotonicity of the Tversky-Kahneman Probability-Weighting Function: A Cautionary Note , 2007 .

[17]  Louis Anthony Cox,et al.  Wiley encyclopedia of operations research and management science , 2011 .

[18]  Michael D. Lee,et al.  A Survey of Model Evaluation Approaches With a Tutorial on Hierarchical Bayesian Methods , 2008, Cogn. Sci..

[19]  M. Birnbaum,et al.  New Paradoxes of Risky Decision Making , 2022 .

[20]  M. Birnbaum,et al.  Testing for intransitivity of preferences predicted by a lexicographic semi-order , 2007 .

[21]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[22]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[23]  Ali al-Nowaihi,et al.  A Simple Derivation of Prelec's Probability Weighting Function , 2006 .

[24]  Jacob K. Goeree,et al.  Quantal Response Equilibrium and Overbidding in Private-Value Auctions , 2002, J. Econ. Theory.

[25]  L. Robin Keller,et al.  Choice-based assessment of utility functions , 1992 .

[26]  Pavlo R. Blavatskyy,et al.  Stochastic expected utility theory , 2005 .

[27]  Alan D. J. Cooke,et al.  Is choice the correct primitive? On using certainty equivalents and reference levels to predict choices among gambles , 1993 .

[28]  Manel Baucells,et al.  Probability and Time Trade-Off , 2012, Manag. Sci..

[29]  Bing Han,et al.  Prospect Theory, Mental Accounting, and Momentum , 2004 .

[30]  G. V. D. Kuilen,et al.  A parameter-free analysis of the utility of money for the general population under prospect theory , 2009 .

[31]  Jack S. Levy,et al.  Applications of Prospect Theory to Political Science , 2003, Synthese.

[32]  Jay I. Myung,et al.  Model discrimination through adaptive experimentation , 2011, Psychonomic bulletin & review.

[33]  M. Abdellaoui Parameter-Free Elicitation of Utility and Probability Weighting Functions , 2000 .

[34]  Chris Guthrie,et al.  Prospect Theory, Risk Preference, and the Law , 2002 .

[35]  Thomas Langer,et al.  Measuring the time stability of Prospect Theory preferences , 2010 .

[36]  Michael H. Birnbaum A statistical test of independence in choice data with small samples , 2012 .

[37]  H. Bleichrodt,et al.  Do financial professionals behave according to prospect theory? An experimental study , 2013 .

[38]  M. Aitkin,et al.  Bayes factors: Prior sensitivity and model generalizability , 2008 .

[39]  N. Chater,et al.  Exaggerated risk: prospect theory and probability weighting in risky choice. , 2009, Journal of experimental psychology. Learning, memory, and cognition.

[40]  Ulrich Schmidt,et al.  Parametric weighting functions , 2009, J. Econ. Theory.

[41]  J. Hey,et al.  Mixture models of choice under risk , 2011, Experiments in Economics.

[42]  H. Jeffreys,et al.  Theory of probability , 1896 .

[43]  Uday S. Karmarkar,et al.  Subjectively weighted utility: A descriptive extension of the expected utility model , 1978 .

[44]  M. Birnbaum,et al.  Organizational Behavior and Human Decision Processes Tests of Theories of Decision Making: Violations of Branch Independence and Distribution Independence Generic Rank-dependent Utility Generic Analysis of Violations of Branch Independence and Distribution Independence Birnbaum and Mcintosh Model: N , 2022 .

[45]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[46]  János Aczél,et al.  A behavioral condition for Prelec's weighting function on the positive line without assuming W(1)=1 , 2007 .

[47]  Richard Gonzalez,et al.  Curvature of the Probability Weighting Function , 1996 .

[48]  Ellen E. Furlong,et al.  Cognitive Constraints on How Economic Rewards Affect Cooperation , 2009, Psychological science.

[49]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[50]  C. S. Hong,et al.  Empirical Tests of Weighted Utility Theory , 1986 .

[51]  Zachary C. Burns,et al.  Overweighting of Small Probabilities , 2011 .

[52]  D. Prelec The Probability Weighting Function , 1998 .

[53]  Mark A. Pitt,et al.  Adaptive Design Optimization: A Mutual Information-Based Approach to Model Discrimination in Cognitive Science , 2010, Neural Computation.

[54]  Yuping Liu Prospect Theory: Developments and Applications in Marketing , 1998 .

[55]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[56]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[57]  A. Witte,et al.  The Influence of Probability on Risky Choice: A Parametric Examination , 1992 .

[58]  I. J. Myung,et al.  The Importance of Complexity in Model Selection. , 2000, Journal of mathematical psychology.

[59]  Richard Gonzalez,et al.  On the Shape of the Probability Weighting Function , 1999, Cognitive Psychology.

[60]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[61]  Colin Camerer Prospect Theory In The Wild: Evidence From The Field , 1998 .

[62]  E. Wagenmakers,et al.  Hierarchical Bayesian parameter estimation for cumulative prospect theory , 2011, Journal of Mathematical Psychology.

[63]  Cynthia E. Devers,et al.  Management Theory Applications of Prospect Theory: Accomplishments, Challenges, and Opportunities , 2010 .

[64]  J. Marschak Rational Behavior, Uncertain Prospects, and Measurable Utility (1950) , 1950 .

[65]  L. Robin Keller,et al.  An experimental evaluation of the descriptive validity of lottery-dependent utility theory , 1990 .

[66]  Uday S. Karmarkar,et al.  Subjectively weighted utility and the Allais Paradox , 1979 .

[67]  H. J. Einhorn,et al.  Expression theory and the preference reversal phenomena. , 1987 .

[68]  G. Gurevich,et al.  Decision-making under uncertainty – A field study of cumulative prospect theory , 2009 .

[69]  John D. Hey,et al.  Why We Should Not Be Silent About Noise , 2005, Experiments in Economics.