Common fixed point of mappings satisfying almost generalized (S, T)-contractive condition in partially ordered partial metric spaces

In this paper, we present the concept of almost generalized (S, T)-contractive condition, and combine this idea with the concept of partial metric and prove some common fixed point results in such spaces. An example is presented to verify the effectiveness and applicability of our main result.

[1]  G. Jungck,et al.  COMMON FIXED POINTS FOR NONCONTINUOUS NONSELF MAPS ON NONMETRIC SPACES , 1996 .

[2]  S. Romaguera Fixed point theorems for generalized contractions on partial metric spaces , 2012 .

[3]  Ishak Altun,et al.  Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces , 2011 .

[4]  D. O’Regan,et al.  Some remarks on a fixed point theorem , 2010 .

[5]  V. Berinde COMMON FIXED POINTS OF NONCOMMUTING DISCONTINUOUS WEAKLY CONTRACTIVE MAPPINGS IN CONE METRIC SPACES , 2010 .

[6]  V. Berinde,et al.  General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces , 2008 .

[7]  S. Romaguera,et al.  CARISTI'S TYPE MAPPINGS ON COMPLETE PARTIAL METRIC SPACES , 2013 .

[8]  Martín Hötzel Escardó,et al.  PCF Extended with Real Numbers , 1996, Theor. Comput. Sci..

[9]  Common fixed points of generalized almost nonexpansive mappings , 2010 .

[10]  Poom Kumam,et al.  Weak condition for generalized multi-valued (f, alpha, beta)-weak contraction mappings , 2011, Appl. Math. Lett..

[11]  Vasile Berinde,et al.  Common fixed points of noncommuting almost contractions in cone metric spaces , 2010 .

[12]  Zoran Kadelburg,et al.  Coupled Coincidence Points of Mappings in Ordered Partial Metric Spaces , 2012 .

[13]  On common fixed points of weakly compatible mappings satisfying ‘generalized condition (B)’ , 2011 .

[14]  Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point , 2012 .

[15]  Salvador Romaguera,et al.  A Kirk Type Characterization of Completeness for Partial Metric Spaces , 2009 .

[16]  Vasile Berinde,et al.  APPROXIMATING FIXED POINTS OF WEAK '-CONTRACTIONS USING THE PICARD ITERATION , 2003 .

[17]  Mujahid Abbas,et al.  Common fixed points of almost generalized contractive mappings in ordered metric spaces , 2011, Appl. Math. Comput..

[18]  Reinhold Heckmann,et al.  Approximation of Metric Spaces by Partial Metric Spaces , 1999, Appl. Categorical Struct..

[19]  W. A. Kirk,et al.  FIXED POINT THEORY FOR CYCLIC BERINDE OPERATORS , 2011 .

[20]  Oscar Valero,et al.  Banach's Fixed Point Theorem for Partial Metric Spaces , 2004 .

[21]  V. Berinde FIXED POINTS AND CONTINUITY OF ALMOST CONTRACTIONS , 2008 .

[22]  Stojan Radenovic,et al.  Common fixed points of four maps in partially ordered metric spaces , 2011, Appl. Math. Lett..

[24]  Stojan Radenovic,et al.  Common fixed point results for four mappings satisfying almost generalized (S, T)-contractive condition in partially ordered metric spaces , 2012, Appl. Math. Comput..

[25]  Ö. Acar,et al.  Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces , 2012 .

[26]  B. Samet,et al.  Berinde mappings in orbitally complete metric spaces , 2011 .

[27]  Some generalizations of Caristi type fixed point theorem on partial metric spaces , 2012 .

[28]  S. G. Matthews,et al.  Partial Metric Topology , 1994 .

[30]  Ishak Altun,et al.  Generalized contractions on partial metric spaces , 2010 .

[31]  Wei-Shih Du,et al.  Some new results and generalizations in metric fixed point theory , 2010 .

[32]  Ishak Altun,et al.  SOME FIXED POINT THEOREMS ON DUALISTIC PARTIAL METRIC SPACES , 2008 .

[33]  Oscar Valero,et al.  On Banach fixed point theorems for partial metric spaces , 2005 .

[34]  Zoran Kadelburg,et al.  Fixed Points of Geraghty-Type Mappings in Various Generalized Metric Spaces , 2011 .

[35]  Salvador Romaguera,et al.  Matkowski's type theorems for generalized contractions on (ordered) partial metric spaces , 2013 .

[36]  Vasile Berinde,et al.  APPROXIMATING COMMON FIXED POINTS OF NONCOMMUTING ALMOST CONTRACTIONS IN METRIC SPACES , 2010 .