Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes Employing a Cationic π‐Conjugated Polymer

Metal halide perovskite semiconductors have demonstrated remarkable potentials in solution‐processed blue light‐emitting diodes (LEDs). However, the unsatisfied efficiency and spectral stability responsible for trap‐mediated non‐radiative losses and halide phase segregation remain the primary unsolved challenges for blue perovskite LEDs. In this study, it is reported that a fluorene‐based π‐conjugated cationic polymer can be blended with the perovskite semiconductor to control film formation and optoelectronic properties. As a result, sky‐blue and true‐blue perovskite LEDs with Commission Internationale de l'Eclairage coordinates of (0.08, 0.22) and (0.12, 0.13) at the record external quantum efficiencies of 11.2% and 8.0% were achieved. In addition, the mixed halide perovskites with the conjugated cationic polymer exhibit excellent spectral stability under external bias. This result illustrates that π‐conjugated cationic polymers have a great potential to realize efficient blue mixed‐halide perovskite LEDs with stable electroluminescence.

[1]  Cathy Y. Wong,et al.  Ligand-engineered bandgap stability in mixed-halide perovskite LEDs , 2021, Nature.

[2]  Wanli Ma,et al.  Advances in Metal Halide Perovskite Film Preparation: The Role of Anti-Solvent Treatment. , 2021, Small methods.

[3]  R. Friend,et al.  Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes , 2021, Nature communications.

[4]  Haizheng Zhong,et al.  Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes , 2020, Nature Communications.

[5]  F. Gao,et al.  Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes , 2020, Nature Communications.

[6]  E. Kumacheva,et al.  Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots , 2020, Nature Nanotechnology.

[7]  B. Stannowski,et al.  A piperidinium salt stabilizes efficient metal-halide perovskite solar cells , 2020, Science.

[8]  Xiaofei Zhao,et al.  Large-area near-infrared perovskite light-emitting diodes , 2020 .

[9]  Jinsong Huang,et al.  Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement , 2019, Nature Communications.

[10]  Dawei Di,et al.  Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures , 2019, Nature Photonics.

[11]  Yan Jin,et al.  Optimization of Low‐Dimensional Components of Quasi‐2D Perovskite Films for Deep‐Blue Light‐Emitting Diodes , 2019, Advanced materials.

[12]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[13]  Jun Chen,et al.  Spectra stable blue perovskite light-emitting diodes , 2019, Nature Communications.

[14]  Yong Cao,et al.  Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5% , 2019, Nature Communications.

[15]  Hong‐Bin Yao,et al.  Efficient and Color-Tunable Quasi-2D CsPbBrxCl3–x Perovskite Blue Light-Emitting Diodes , 2018, ACS Photonics.

[16]  Michael Ng,et al.  High Efficiency Blue and Green Light-Emitting Diodes Using Ruddlesden–Popper Inorganic Mixed Halide Perovskites with Butylammonium Interlayers , 2018, Chemistry of Materials.

[17]  Jinsong Huang,et al.  Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells , 2018, Advanced materials.

[18]  N. Wang,et al.  Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures , 2018, Nature.

[19]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[20]  Zhijun Ning,et al.  Quasi‐2D Inorganic CsPbBr3 Perovskite for Efficient and Stable Light‐Emitting Diodes , 2018 .

[21]  Peng Gao,et al.  High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes , 2018, 1804.09785.

[22]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[23]  C. Brabec,et al.  Local Observation of Phase Segregation in Mixed-Halide Perovskite. , 2018, Nano letters.

[24]  Gang Li,et al.  Stable and Efficient Organo‐Metal Halide Hybrid Perovskite Solar Cells via π‐Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction , 2018, Advanced materials.

[25]  P. Kamat,et al.  Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites , 2017, Nature Communications.

[26]  J. E. Halpert,et al.  Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes , 2017 .

[27]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[28]  Oleksandr Voznyy,et al.  Highly Efficient Perovskite‐Quantum‐Dot Light‐Emitting Diodes by Surface Engineering , 2016, Advanced materials.

[29]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[30]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[31]  Feng Gao,et al.  Highly Efficient Perovskite Nanocrystal Light‐Emitting Diodes Enabled by a Universal Crosslinking Method , 2016, Advanced materials.

[32]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[33]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[34]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[35]  D. Kabra,et al.  Band Gap Tuning of CH₃NH₃Pb(Br(1-x)Clx)₃ Hybrid Perovskite for Blue Electroluminescence. , 2015, ACS applied materials & interfaces.

[36]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[37]  Jianbin Xu,et al.  Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. , 2015, Journal of the American Chemical Society.

[38]  Dawei Di,et al.  Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. , 2015, Nano letters.

[39]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[40]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[41]  Thuc-Quyen Nguyen,et al.  Controlling ion motion in polymer light-emitting diodes containing conjugated polyelectrolyte electron injection layers. , 2011, Journal of the American Chemical Society.

[42]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  H. Schock,et al.  Distinction between bulk and interface states in CuInSe2/CdS/ZnO by space charge spectroscopy , 1998 .

[44]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .