The Steklov spectrum of surfaces: asymptotics and invariants

Abstract We obtain precise asymptotics for the Steklov eigenvalues on a compact Riemannian surface with boundary. It is shown that the number of connected components of the boundary, as well as their lengths, are invariants of the Steklov spectrum. The proofs are based on pseudodifferential techniques for the Dirichlet-to-Neumann operator and on a number–theoretic argument.

[1]  J. Edward,et al.  An inverse spectral result for the Neumann operator on planar domains , 1993 .

[2]  Ori Parzanchevski On $G$-sets and isospectrality , 2011, 1104.0315.

[3]  Carolyn S. Gordon,et al.  Isospectral and Isoscattering Manifolds: A Survey of Techniques and Examples , 2004 .

[4]  S. Alvarez,et al.  Resonance sequences and focal decomposition , 2009 .

[5]  P. Hislop,et al.  Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in R d , 2001 .

[6]  Gian-Carlo Rota,et al.  The analysis of partial differential operators: I. Hormander, Springer, 1985, Vol. 1, 391 pp.; Vol. 2, 390 pp.; Vol. 3, 525 pp.; Vol. 4, 351 pp. , 1986 .

[7]  Ahmad El Soufi,et al.  Isoperimetric control of the Steklov spectrum , 2011, 1103.2863.

[8]  R. Schoen,et al.  Minimal surfaces and eigenvalue problems , 2013, 1304.0851.

[9]  Brian Davies,et al.  Partial Differential Equations II , 2002 .

[10]  Robert Weinstock,et al.  Inequalities for a Classical Eigenvalue Problem , 1954 .

[11]  P. Doyle,et al.  Laplace-isospectral hyperbolic 2-orbifolds are representation-equivalent , 2011, 1103.4372.

[12]  Iosif Polterovich,et al.  Shape optimization for low Neumann and Steklov eigenvalues , 2008, 0811.2617.

[13]  V. Guillemin,et al.  The spectrum of positive elliptic operators and periodic bicharacteristics , 1975 .

[14]  M. Agranovich On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain , 2006 .

[15]  I. Polterovich,et al.  Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces , 2012, 1209.4869.

[16]  Michael E. Taylor,et al.  Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .

[17]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[18]  R. Schoen,et al.  Sharp eigenvalue bounds and minimal surfaces in the ball , 2012, 1209.3789.

[19]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[20]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[21]  V. Guillemin,et al.  Eigenvalues associated with a closed geodesic , 1976 .

[22]  ON AN INVERSE PROBLEM FOR THE STEKLOV SPECTRUM OF A RIEMANNIAN SURFACE , 2013 .

[23]  Iosif Polterovich,et al.  Heat Invariants of the Steklov Problem , 2013, 1304.7233.