Regularization of inverse problems via time discrete geodesics in image spaces

This paper addresses the solution of inverse problems in imaging given an additional reference image. We combine a modification of the discrete geodesic path model for image metamorphosis with a variational model,actually the $L^2$-$TV$ model, for image reconstruction. We prove that the space continuous model has a minimizer which depends in a stable way from the input data. Two minimization procedures which alternate over the involved sequences of deformations and images in different ways are proposed. The updates with respect to the image sequence exploit recent algorithms from convex analysis to minimize the $L^2$-$TV$ functional. For the numerical computation we apply a finite difference approach on staggered grids together with a multilevel strategy. We present proof-of-the-concept numerical results for sparse and limited angle computerized tomography as well as for superresolution demonstrating the power of the method.

[1]  M. Rumpf,et al.  A generalized model for optimal transport of images including dissipation and density modulation , 2015, 1504.01988.

[2]  K J Batenburg,et al.  Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs). , 2011, Journal of structural biology.

[3]  M. E. Davison,et al.  The Ill-Conditioned Nature of the Limited Angle Tomography Problem , 1983 .

[4]  Penousal Machado,et al.  Image descriptors in radiology images: a systematic review , 2017, Artificial Intelligence Review.

[5]  A K Louis,et al.  Incomplete data problems in x-ray computerized tomography , 1986 .

[6]  Glenn R. Easley,et al.  Radon Transform Inversion using the Shearlet Representation , 2010 .

[7]  Eric Todd Quinto,et al.  Limited Data Problems for the Generalized Radon Transform in ℝn , 2015, SIAM J. Math. Anal..

[8]  Xiaoyi Jiang,et al.  Motion Correction in Thoracic Positron Emission Tomography , 2014 .

[9]  Alexander Effland Discrete Riemannian Calculus and A Posteriori Error Control on Shape Spaces , 2017 .

[10]  Benjamin Berkels,et al.  Time Discrete Geodesic Paths in the Space of Images , 2015, SIAM J. Imaging Sci..

[11]  Stein K. F. Stoter,et al.  Phase‐field boundary conditions for the voxel finite cell method: Surface‐free stress analysis of CT‐based bone structures , 2017, International journal for numerical methods in biomedical engineering.

[12]  Qianjin Feng,et al.  Predicting CT Image From MRI Data Through Feature Matching With Learned Nonlinear Local Descriptors , 2018, IEEE Transactions on Medical Imaging.

[13]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[14]  Jan Modersitzky,et al.  FAIR - Flexible Algorithms for Image Registration , 2009, Fundamentals of algorithms.

[15]  M. Rumpf,et al.  Variational time discretization of geodesic calculus , 2012, 1210.2097.

[16]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[17]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[18]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[19]  Johan Karlsson,et al.  Generalized Sinkhorn Iterations for Regularizing Inverse Problems Using Optimal Mass Transport , 2016, SIAM J. Imaging Sci..

[20]  Jan Sijbers,et al.  Fast and flexible X-ray tomography using the ASTRA toolbox. , 2016, Optics express.

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[23]  Alain Trouvé,et al.  Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D'Arcy Thompson. , 2015, Annual review of biomedical engineering.

[24]  Eldad Haber,et al.  A Multilevel Method for Image Registration , 2005, SIAM J. Sci. Comput..

[25]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[26]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[27]  Martin Rumpf,et al.  Discrete Geodesic Calculus in Shape Space and Applications in the Space of Viscous Fluidic Objects , 2013, SIAM J. Imaging Sci..

[28]  Eric Todd Quinto,et al.  Full Characterization of Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data , 2017 .

[29]  Amir Beck,et al.  First-Order Methods in Optimization , 2017 .

[30]  Gabriele Steidl,et al.  Morphing of Manifold-Valued Images Inspired by Discrete Geodesics in Image Spaces , 2017, SIAM J. Imaging Sci..

[31]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[32]  Andreas Rieder,et al.  Incomplete data problems in X-ray computerized tomography , 1989 .

[33]  Linh V. Nguyen How strong are streak artifacts in limited angle computed tomography? , 2014, 1407.3037.

[34]  J. Ball Global invertibility of Sobolev functions and the interpenetration of matter , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[35]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[36]  D. Sundararajan Image ReconstructionImagereconstruction from projections from Projections , 2017 .

[37]  Jan Sijbers,et al.  The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography. , 2015, Ultramicroscopy.

[38]  H. Schumacher,et al.  Combined Reconstruction and Motion Correction in SPECT Imaging , 2009, IEEE Transactions on Nuclear Science.

[39]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[40]  Julia A. Schnabel,et al.  A level-set approach to joint image segmentation and registration with application to CT lung imaging , 2017, Comput. Medical Imaging Graph..

[41]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, CVPR.

[42]  Michael T. Heath,et al.  A Phase Field Method for Tomographic Reconstruction from Limited Data , 2012, BMVC.

[43]  Wan-Chi Siu,et al.  Single image super-resolution using Gaussian process regression , 2011, CVPR 2011.

[44]  Nevzat Onur Domaniç,et al.  Shape-based image reconstruction using linearized deformations , 2017, Inverse problems.

[45]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[46]  G T Herman,et al.  Image reconstruction from a small number of projections , 2008, Inverse problems.

[47]  Gabriele Steidl,et al.  First order algorithms in variational image processing , 2014, ArXiv.

[48]  Jing Yuan,et al.  Simultaneous Higher-Order Optical Flow Estimation and Decomposition , 2007, SIAM J. Sci. Comput..

[49]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[50]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[51]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[52]  Thomas Pock,et al.  Inertial Proximal Alternating Linearized Minimization (iPALM) for Nonconvex and Nonsmooth Problems , 2016, SIAM J. Imaging Sci..

[53]  Antonin Chambolle,et al.  An introduction to continuous optimization for imaging , 2016, Acta Numerica.

[54]  Chen Chong,et al.  Image reconstruction through metamorphosis , 2018 .

[55]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[56]  Jing Cai 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy , 2015 .

[57]  Alexander Katsevich,et al.  Local Tomography for the Limited-Angle Problem , 1997 .

[58]  Eric Todd Quinto,et al.  Characterization and reduction of artifacts in limited angle tomography , 2013 .

[59]  Radu Ioan Bot,et al.  A Douglas-Rachford Type Primal-Dual Method for Solving Inclusions with Mixtures of Composite and Parallel-Sum Type Monotone Operators , 2012, SIAM J. Optim..

[60]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[61]  Klaas Paul Pruessmann,et al.  Realistic Analytical Phantoms for Parallel Magnetic Resonance Imaging , 2012, IEEE Transactions on Medical Imaging.

[62]  A. Zygmund,et al.  Measure and integral : an introduction to real analysis , 1977 .

[63]  Alain Trouvé,et al.  Local Geometry of Deformable Templates , 2005, SIAM J. Math. Anal..

[64]  Chong Chen,et al.  Indirect Image Registration with Large Diffeomorphic Deformations , 2017, SIAM J. Imaging Sci..

[65]  Peter Kuchment,et al.  The Radon Transform and Medical Imaging , 2014, CBMS-NSF regional conference series in applied mathematics.

[66]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[67]  K. Conrad,et al.  Group Actions , 2018, Cyber Litigation: The Legal Principles.

[68]  Jurgen Frikel,et al.  Sparse regularization in limited angle tomography , 2011, 1109.0385.

[69]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[70]  Gabriele Steidl,et al.  Examplar-Based Face Colorization Using Image Morphing , 2017, J. Imaging.

[71]  L. Younes Shapes and Diffeomorphisms , 2010 .

[72]  H. Alt Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .

[73]  Dirk A. Lorenz,et al.  Mathematische Bildverarbeitung - Einführung in Grundlagen und moderne Theorie , 2011 .