Gauging Spacetime Symmetries on the Worldsheet and the Geometric Langlands Program

We study the two-dimensional twisted (0,2) sigma-model on various smooth complex flag manifolds G/B, and explore its relevance to the geometric Langlands program. We find that an equivalence - at the level of the holomorphic chiral algebra - between a bosonic string on G/B and a B-gauged version of itself on G, will imply an isomorphism of classical W-algebras and a level relation which underlie a geometric Langlands correspondence for G=SL(N,C). This furnishes an alternative physical interpretation of the geometric Langlands correspondence for G=SL(N,C), to that demonstrated earlier by Kapustin and Witten via an electric-magnetic duality of four-dimensional gauge theory. Likewise, the Hecke operators and Hecke eigensheaves will have an alternative physical interpretation in terms of the correlation functions of local operators in the holomorphic chiral algebra of a quasi-topological sigma-model without boundaries. A forthcoming paper will investigate the interpretation of a ``quantum'' geometric Langlands correspondence for G=SL(N,C) in a similar setting, albeit with fluxes of the sigma-model moduli which induce a ``quantum'' deformation of the relevant classical algebras turned on.

[1]  M. Tan Equivariant cohomology of the chiral de Rham complex and the half-twisted gauged sigma model , 2006, hep-th/0612164.

[2]  E. Frenkel Ramifications of the Geometric Langlands Program , 2006, math/0611294.

[3]  A. Stoyanovsky Quantum Langlands duality and conformal field theory , 2006, math/0610974.

[4]  E. Witten,et al.  Electric-Magnetic Duality And The Geometric Langlands Program , 2006, hep-th/0604151.

[5]  A. Chervov,et al.  Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence , 2006, hep-th/0604128.

[6]  E. Frenkel Lectures on the Langlands program and conformal field theory , 2005, hep-th/0512172.

[7]  E. Frenkel,et al.  Local geometric Langlands correspondence and affine Kac-Moody algebras , 2005, math/0508382.

[8]  E. Witten Two-dimensional models with (0,2) supersymmetry: perturbative aspects , 2005, hep-th/0504078.

[9]  I. Bakas,et al.  On the tensionless limit of gauged WZW models , 2004, hep-th/0403165.

[10]  Andreas Arvanitoyeorgos,et al.  An Introduction to Lie Groups and the Geometry of Homogeneous Spaces , 2003 .

[11]  M. Zabzine,et al.  Tensionless strings, WZW models at critical level and massless higher spin fields , 2003, hep-th/0305098.

[12]  E. Frenkel,et al.  D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras , 2003 .

[13]  E. Frenkel Lectures on Wakimoto modules, opers and the center at the critical level , 2002, math/0210029.

[14]  E. Frenkel,et al.  Vertex Algebras and Algebraic Curves , 2000, math/0007054.

[15]  V. Schechtman,et al.  Gerbes of chiral differential operators , 1999, math/9906117.

[16]  V. Schechtman,et al.  Chiral de Rham Complex , 1998, math/9803041.

[17]  E. Frenkel Affine Algebras, Langlands Duality and Bethe Ansatz , 1995, q-alg/9506003.

[18]  B R Greene,et al.  String theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Fuchs Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory , 1992 .

[20]  K. Schoutens,et al.  W symmetry in conformal field theory , 1992, hep-th/9210010.

[21]  B. Feigin,et al.  AFFINE KAC-MOODY ALGEBRAS AT THE CRITICAL LEVEL AND GELFAND-DIKII ALGEBRAS , 1992 .

[22]  A. Wipf,et al.  On the general structure of Hamiltonian reductions of the WZNW theory , 1991, hep-th/9112068.

[23]  Boris Feigin,et al.  Quantization of the Drinfeld-Sokolov reduction , 1990 .

[24]  A. Wipf,et al.  Toda Theory and W-Algebra from a Gauged WZNW Point of View , 1990 .

[25]  A. Wipf,et al.  Liouville and Toda theories as conformally reduced WZNW theories , 1989 .

[26]  M. Wakimoto Fock representations of the affine Lie algebraA1(1) , 1986 .

[27]  A. Polyakov,et al.  Theory of nonabelian goldstone bosons in two dimensions , 1983 .

[28]  John Corcoran,et al.  String theory , 1974, Journal of Symbolic Logic.

[29]  M. Flohr,et al.  Conformal Field Theory , 2006 .

[30]  V. Drinfeld QUANTIZATION OF HITCHIN’S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES , 2005 .

[31]  J. Polchinski String theory. Vol. 2: Superstring theory and beyond , 1998 .

[32]  S. Ketov Conformal Field Theory , 1995 .

[33]  H. Ooguri,et al.  Hidden SL(n) Symmetry in Conformal Field Theories , 1995 .

[34]  E. Frenkel W -Algebras and Langlands-Drinfeld Correspondence , 1992 .

[35]  F. Bais,et al.  Extensions of the Virasoro Algebra Constructed from Kac-Moody Algebras Using Higher Order Casimir Invariants , 1988 .

[36]  V. Fateev,et al.  Conformal quantum field theory models in two dimensions having Z3 symmetry , 1987 .

[37]  H. Ooguri,et al.  Conformal and current algebras on a general Riemann surface , 1987 .

[38]  Raymond O. Wells,et al.  Differential analysis on complex manifolds , 1980 .