Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment.

Here we demonstrate the design and construction of a simple, highly sensitive and selective nanofluidic sensing device, based on a single synthetic conical nanochannel for the sequence specific detection of single-stranded DNA oligonucleotides. The biosensing performance of the device depends sensitively on the surface charge and chemical groups incorporated on the inner channel wall that act as binding sites for different analytes. Uncharged peptide nucleic acid (PNA) probes are covalently immobilized on the channel surface through carbodiimide coupling chemistry. This diminishes the channel surface charge, leading to a significant decrease in the rectified ion current flowing through the channel. The PNA-modified channel acts as a highly specific and selective device for the detection of a complementary single-stranded DNA sequence. Upon PNA/DNA hybridization, the channel surface charge density increased due to the presence of the negatively charged DNA strand. The changes in the surface charge-dependent current-voltage (I-V) curves and rectification ratio of the channel confirm the success of immobilization and PNA/DNA hybridization within a confined space at the nanoscale. In addition, a control experiment indicated that the biosensor exhibits remarkable specificity toward a cDNA strand and also has the ability to discriminate single-base mismatch DNA sequences on the basis of rectified ion flux through the nanochannel. In this context, we envision that the single conical nanochannels functionalized with a PNA probe will provide a biosensing platform for the detection and discrimination of short single-stranded DNA oligomer of unknown sequence.

[1]  Z. Siwy,et al.  Nanofluidic diode. , 2007, Nano letters.

[2]  P. Piunno,et al.  Fiber-optic DNA sensor for fluorometric nucleic acid determination. , 1995, Analytical chemistry.

[3]  Geoffrey A. Barrall,et al.  Monitoring the escape of DNA from a nanopore using an alternating current signal. , 2010, Journal of the American Chemical Society.

[4]  Javier Cervera,et al.  Ionic conduction, rectification, and selectivity in single conical nanopores. , 2006, The Journal of chemical physics.

[5]  B. Nordén,et al.  Hybridization of peptide nucleic acid. , 1998, Biochemistry.

[6]  Ravindra Venkatramani,et al.  Role of nucleobase energetics and nucleobase interactions in single-stranded peptide nucleic acid charge transfer. , 2009, Journal of the American Chemical Society.

[7]  M. Gaglione,et al.  An alternative strategy to synthesize PNA and DNA magnetic conjugates forming nanoparticle assembly based on PNA/DNA duplexes. , 2010, Molecular bioSystems.

[8]  H. Sullivan Ionic Channels of Excitable Membranes, 2nd Ed. , 1992, Neurology.

[9]  Zuzanna S Siwy,et al.  Resistive-pulse DNA detection with a conical nanopore sensor. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[10]  Hiroshi Aoki,et al.  Label- and marker-free gene detection based on hybridization-induced conformational flexibility changes in a ferrocene-PNA conjugate probe. , 2007, The Analyst.

[11]  M. Fojta,et al.  Adsorption of peptide nucleic acid and DNA decamers at electrically charged surfaces. , 1997, Biophysical journal.

[12]  P. Nielsen,et al.  Unique base-pair breathing dynamics in PNA-DNA hybrids. , 1997, Journal of molecular biology.

[13]  Zuzanna S Siwy,et al.  Biosensing with nanofluidic diodes. , 2009, Journal of the American Chemical Society.

[14]  A. Morrison,et al.  Solid-state nanopore technologies for nanopore-based DNA analysis. , 2007, Nanomedicine.

[15]  Ryuji Kawano,et al.  Controlling the translocation of single-stranded DNA through alpha-hemolysin ion channels using viscosity. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[16]  Martin Moskovits,et al.  A heterogeneous PNA-based SERS method for DNA detection. , 2007, Journal of the American Chemical Society.

[17]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[18]  L. A. Baker,et al.  Nanopores: a makeover for membranes. , 2008, Nature nanotechnology.

[19]  Xu Hou,et al.  Learning from nature: building bio-inspired smart nanochannels. , 2009, ACS nano.

[20]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[21]  Yoshio Umezawa,et al.  Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. , 2003, The Analyst.

[22]  Charles R. Martin,et al.  Nanotubule-Based Molecular-Filtration Membranes , 1997 .

[23]  Salvador Mafe,et al.  Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[24]  P. Ramirez,et al.  Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Rashid Bashir,et al.  DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551-1556 , 2004 .

[26]  Christina Trautmann,et al.  An Asymmetric Polymer Nanopore for Single Molecule Detection , 2004 .

[27]  L. A. Baker,et al.  Nanopore DNA sensors based on dendrimer-modified nanopipettes. , 2009, Chemical communications.

[28]  Hirofumi Daiguji,et al.  Ion transport in nanofluidic channels , 2004 .

[29]  Jiajun Gu,et al.  PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES. , 2004, Nano letters.

[30]  Katsuhiro Shirono,et al.  Nanofluidic diode and bipolar transistor. , 2005, Nano letters.

[31]  Marc Gershow,et al.  Detecting single stranded DNA with a solid state nanopore. , 2005, Nano letters.

[32]  Xu Hou,et al.  Gating of single synthetic nanopores by proton-driven DNA molecular motors. , 2008, Journal of the American Chemical Society.

[33]  Rashid Bashir,et al.  Solid-state nanopore channels with DNA selectivity. , 2007, Nature nanotechnology.

[34]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[35]  Reinhard Neumann,et al.  Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. , 2008, Journal of the American Chemical Society.

[36]  S. Howorka,et al.  Kinetics of duplex formation for individual DNA strands within a single protein nanopore , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[38]  P. Nielsen,et al.  Applications of peptide nucleic acids. , 1999, Current opinion in biotechnology.

[39]  M Misakian,et al.  Driven DNA transport into an asymmetric nanometer-scale pore. , 2000, Physical review letters.

[40]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[41]  Cees Dekker,et al.  Nanotechnology: Carbon nanotubes with DNA recognition , 2002, Nature.

[42]  N Balasubramanian,et al.  Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. , 2008, Biosensors & bioelectronics.

[43]  Zuzanna S Siwy,et al.  Learning Nature's Way: Biosensing with Synthetic Nanopores , 2007, Science.

[44]  A. Klibanov,et al.  Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. , 2003, Journal of the American Chemical Society.

[45]  R. Neumann,et al.  A pH-tunable nanofluidic diode with a broad range of rectifying properties. , 2009, ACS nano.

[46]  S. Smirnov,et al.  Label-free DNA sensor based on surface charge modulated ionic conductance. , 2009, ACS nano.

[47]  Reinhard Neumann,et al.  Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. , 2009, Nano letters.

[48]  Ernö Pretsch,et al.  Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis. , 2007, Nano letters.

[49]  Javier Cervera,et al.  Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. , 2010, Journal of the American Chemical Society.

[50]  Tomoji Kawai,et al.  Peptide-nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization. , 2007, Analytical chemistry.

[51]  Peter E. Nielsen,et al.  Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors , 1996 .

[52]  K. M. Millan,et al.  Sequence-selective biosensor for DNA based on electroactive hybridization indicators. , 1993, Analytical chemistry.

[53]  Reimar Spohr,et al.  Diode-like single-ion track membrane prepared by electro-stopping , 2001 .

[54]  Róbert E. Gyurcsányi,et al.  Chemically-modified nanopores for sensing , 2008 .

[55]  K. Healy,et al.  Modifying the surface charge of single track-etched conical nanopores in polyimide , 2008, Nanotechnology.

[56]  Meni Wanunu,et al.  Chemically modified solid-state nanopores. , 2007, Nano letters.

[57]  R. Neumann,et al.  Biosensing with functionalized single asymmetric polymer nanochannels. , 2010, Macromolecular bioscience.

[58]  S. Thayumanavan,et al.  Molecular discrimination inside polymer nanotubules. , 2008, Nature nanotechnology.

[59]  Jun Li,et al.  Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays , 2002 .

[60]  Matsuhiko Nishizawa,et al.  Controlling Ion‐Transport Selectivity in Gold Nanotubule Membranes , 2001 .

[61]  A. Majumdar,et al.  Rectification of ionic current in a nanofluidic diode. , 2007, Nano letters.

[62]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[63]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[64]  M. Burns,et al.  Nanopore sequencing technology: nanopore preparations. , 2007, Trends in biotechnology.

[65]  Pavel Takmakov,et al.  Sensing DNA hybridization via ionic conductance through a nanoporous electrode. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[66]  Hans Söderlund,et al.  Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations , 2002, Science.

[67]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[68]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[69]  Reinhard Neumann,et al.  Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal , 2003 .

[70]  P Hänggi,et al.  Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck model. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.