Manufacturing Induced Properties: Determination, Understanding, and Beneficial Use

Based on its procedural principle, every manufacturing technology affects a variety of properties of the workpiece or product in a characteristic way (Sect. 2.3). The sum of all those properties which comprise geometrical as well as material-related ones is considered as manufacturing-induced properties. While the geometric manufacturing-induced properties are often the reason why a specific technology is chosen by the designer for the manufacturing of a certain product, the material-related manufacturing-induced properties are often seen as by-products of the process. With regard to metal forming, all manufacturing processes inherently influence the mechanical properties of the manufactured material. In many cases, these mechanical manufacturing-induced properties are merely regarded in terms of restrictions in product development. However, with respect to a manufacturing-integrated product development approach, the mechanical properties are of special interest, since we aim at utilizing their full potential to maximize the product performance.

[1]  Christian Wagner,et al.  PROCESS INTEGRATED DESIGN GUIDELINES - SYSTEMATICALLY LINKING MANUFACTURING PROCESSES TO PRODUCT DESIGN , 2016 .

[2]  Enrico Bruder,et al.  The effect of deformation texture on the thermal stability of UFG HSLA steel , 2012, Journal of Materials Science.

[3]  J. Rösler,et al.  Mechanisches Verhalten der Werkstoffe , 2003 .

[4]  W. Ramberg,et al.  Description of Stress-Strain Curves by Three Parameters , 1943 .

[5]  Mitsuhiro Okayasu,et al.  Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel , 2008 .

[6]  Sebastian Gramlich Vom fertigungsgerechten Konstruieren zum produktionsintegrierenden Entwickeln - Durchgängige Modelle und Methoden im Produktlebenszyklus , 2013 .

[7]  Michael Kohler,et al.  Smoothing spline regression estimation based on real and artificial data , 2015 .

[8]  Enrico Bruder,et al.  Quantification of local and global elastic anisotropy in ultrafine grained gradient microstructures, produced by linear flow splitting , 2013 .

[9]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[10]  N. Hansen,et al.  High angle boundaries formed by grain subdivision mechanisms , 1997 .

[11]  Terence G. Langdon,et al.  Using equal-channel angular pressing for refining grain size , 2000 .

[12]  John E. Carsley,et al.  Mechanical behavior of a bulk nanostructured iron alloy , 1998 .

[13]  Vanessa Kaune Entstehung und Eigenschaften von UFG Gradientengefügen durch Spaltprofilieren und Spaltbiegen höherfester Stähle , 2013 .

[14]  Gary S. Schajer,et al.  Measurement of Non-Uniform Residual Stresses Using the Hole-Drilling Method. Part I—Stress Calculation Procedures , 1988 .

[15]  Peter Groche,et al.  UFG-Microstructures by Linear Flow Splitting , 2008 .

[16]  Holger Hanselka,et al.  Prüfung linearer Bauteile auf Wälzfestigkeit , 2013 .

[17]  C. R. Williams,et al.  A practical method for statistical analysis of strain–life fatigue data , 2003 .

[18]  C. J. Tyne,et al.  Correlation of Yield Strength and Tensile Strength with Hardness for Steels , 2008, Journal of Materials Engineering and Performance.

[19]  Sebastian Gramlich,et al.  Entwicklung innovativer Produkte durch Verknüpfung von Funktionsintegration und Fertigungsprozessintegration , 2014 .

[20]  B.M. Wilamowski,et al.  Neural network architectures and learning algorithms , 2009, IEEE Industrial Electronics Magazine.

[21]  Holger Hanselka,et al.  Untersuchung schädigungsmechanischer Ansätze an UFG Gefügebauteilen sowie Bewertung ihrer Schwingfestigkeit mit Hilfe der FEM , 2010 .

[22]  K. T. Ramesh,et al.  Grain size dependent shear instabilities in body-centered and face-centered cubic materials , 2008 .

[23]  Enrico Bruder,et al.  Influence of Gradients in the Elastic Anisotropy on the Reliability of Residual Stresses Determined by the Hole Drilling Method , 2014 .

[24]  Dierk Raabe,et al.  Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels , 2006 .

[25]  Volker Landersheim Numerische Schwingfestigkeitsbewertung inhomogener Spaltprofile mit dem örtlichen Dehnungskonzept , 2013 .

[26]  G. Lugosi,et al.  A universally acceptable smoothing factor for kernel density estimates , 1996 .

[27]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[28]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[29]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[30]  C Boller,et al.  Materials Data for Cyclic Loading , 1990 .

[31]  Luc Devroye,et al.  Combinatorial methods in density estimation , 2001, Springer series in statistics.

[32]  Yuri Estrin,et al.  Producing bulk ultrafine-grained materials by severe plastic deformation , 2006 .

[33]  Adam Krzyżak,et al.  Fixed-design regression estimation based on real and artificial data , 2013 .

[34]  Michael Kohler,et al.  Nonparametric estimation of a conditional density , 2017 .

[35]  Holger Hanselka,et al.  Das ANSLC Programm zur Abschätzung zyklischer Werkstoffkennwerte , 2009 .

[36]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[37]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[38]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[39]  Enrico Bruder,et al.  Properties of UFG HSLA Steel Profiles Produced by Linear Flow Splitting , 2008 .

[40]  Ivan Karin,et al.  Ein wahrer Antriebs-Kraftakt , 2012 .

[41]  Michael Kohler,et al.  Adaptive Estimation of a Conditional Density , 2016 .

[42]  S. Manson Fatigue: A complex subject—Some simple approximations , 1965 .

[43]  Volker Landersheim,et al.  Application of the local strain approach on a rolling point contact model , 2013 .

[44]  Uwe Erb,et al.  Analysis of hardness–tensile strength relationships for electroformed nanocrystalline materials , 2008 .

[45]  Jennifer Bödecker Randschichtmodifikation von integral verzweigten Blechprofilen mit UFG Gradientengefügen , 2013 .

[46]  Gunther Eggeler,et al.  Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen , 2019 .

[47]  H. Höppel,et al.  Fatigue Properties of Bulk Nanostructured Materials , 2009 .

[48]  Ivan Karin Zur Verwendung von durch Spaltprofilieren hergestellten Belchstrukturen als wälzbeanspruchte Oberflächen im Vergleich zum Ausgangszustand , 2016 .

[49]  Enrico Bruder Thermische Stabilität von Stählen mit ultrafeinkörnigen Gradientengefügen und deren mechanische Eigenschaften , 2011 .

[50]  Thomas Bruder,et al.  Severe plastic deformation by linear flow splitting , 2007 .

[51]  Peter Groche,et al.  Basics of linear flow splitting , 2007 .

[52]  Michael Kohler,et al.  Estimation of quantiles from data with additional measurement errors , 2017 .

[53]  E. Nadaraya On Estimating Regression , 1964 .

[54]  Peter Groche,et al.  Improving the formability of linear flow split profiles by laser annealing , 2016 .

[55]  Marco Antonio Meggiolaro,et al.  Statistical evaluation of strain-life fatigue crack initiation predictions , 2004 .

[56]  Clemens Müller,et al.  Ein wissensbasierter fertigungsintegrierender Produktentwicklungsansatz , 2015 .

[57]  G. Rosenberg,et al.  CORRELATION BETWEEN HARDNESS AND TENSILE PROPERTIES IN ULTRA-HIGH STRENGTH DUAL PHASE STEELS SHORT COMMUNICATION , 2011 .

[58]  Evan Ma,et al.  Strain hardening, strain rate sensitivity, and ductility of nanostructured metals , 2004 .

[59]  T. Langdon,et al.  Microstructural characteristics of ultrafine-grained aluminum produced using equal-channel angular pressing , 1998 .

[60]  R. Valiev,et al.  Nanostructuring of metals by severe plastic deformation for advanced properties , 2004, Nature materials.