Thermodynamic and geometric study of diasteroisomeric complexes formed by racemic flavanones and three cyclodextrins through NMR

[1]  S. Livingstone NMR as a tool for simultaneous study of diasteroisomeric inclusion complexes, part 2: complexes formed by racemic mixture of 4 0 -hydroxyflavanone and two cyclodextrins , 2012 .

[2]  C. Jullian,et al.  NMR as a tool for simultaneous study of diasteroisomeric inclusion complexes, part 2: complexes formed by racemic mixture of 4′-hydroxyflavanone and two cyclodextrins , 2012, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[3]  A. Badwan,et al.  The role of drug hydrophobicity in β-cyclodextrin complexes , 2010 .

[4]  P. Salvadori,et al.  NMR Chiral Analysis of Aromatic Hydrocarbons by Using Permethylated . beta.-Cyclodextrin as Chiral Solvating Agent. , 2010 .

[5]  F. Tsai,et al.  Preparation, characterisation and activity of the inclusion complex of paeonol with β-cyclodextrin. , 2010 .

[6]  F. García-Carmona,et al.  Use of reversed phase high pressure liquid chromatography for the physicochemical and thermodynamic characterization of oxyresveratrol/beta-cyclodextrin complexes. , 2010, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[7]  C. Jullian,et al.  NMR as a tool for simultaneous study of diastereoisomeric inclusion complexes formed by racemic mixture of 4′-hydroxyflavanone and heptakis-(2,6-O-dimethyl)-β-cyclodextrin , 2010 .

[8]  D. K. Balta,et al.  Host/guest complex of β-cyclodextrin/5-thia pentacene-14-one for photoinitiated polymerization of acrylamide in water , 2008 .

[9]  F. Mendizábal,et al.  Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  F. García-Carmona,et al.  Rapid, simple and sensitive determination of the apparent formation constants of trans-resveratrol complexes with natural cyclodextrins in aqueous medium using HPLC. , 2008, Food chemistry.

[11]  A. H. Rosa,et al.  Interaction between nitroheterocyclic compounds with beta-cyclodextrins: phase solubility and HPLC studies. , 2008, Journal of pharmaceutical and biomedical analysis.

[12]  L. Jicsinszky,et al.  External vs. Internal Interactions in the Enantiodiscrimination of Fluorinated α-Amino Acid Derivatives by Heptakis[2,3-di-O-acetyl-6-O-(tert-butyldimethylsilyl)] -βcyclodextrin, a Powerful Chiral Solvating Agent for NMR Spectroscopy. , 2008 .

[13]  S. Upadhyay,et al.  Complexation study of midazolam hydrochloride with β‐cyclodextrin: NMR spectroscopic study in solution , 2008, Magnetic resonance in chemistry : MRC.

[14]  P. Zarzycki,et al.  Interaction of native α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin and their hydroxypropyl derivatives with selected organic low molecular mass compounds at elevated and subambient temperature under RP-HPLC conditions , 2008, Analytical and bioanalytical chemistry.

[15]  K. Michalska,et al.  NMR and molecular modeling study, as complementary techniques to capillary electrophoresis method to elucidate the separation mechanism of linezolid enantiomers. , 2008, Journal of chromatography. A.

[16]  A. I. Olives,et al.  Influence of the presence of methyl cyclodextrins in high-performance liquid chromatography mobile phases on the separation of beta-carboline alkaloids. , 2008, Journal of chromatography. A.

[17]  S. Upadhyay,et al.  Complexation studies of pioglitazone hydrochloride and β-cyclodextrin: NMR (1H, ROESY) spectroscopic study in solution , 2008 .

[18]  L. Jicsinszky,et al.  External vs. Internal Interactions in the Enantiodiscrimination of Fluorinated α-Amino Acid Derivatives by Heptakis[2,3-di-O-acetyl-6-O-(tert-butyldimethylsilyl)]-β-cyclodextrin, a Powerful Chiral Solvating Agent for NMR Spectroscopy , 2008 .

[19]  K. Michalska,et al.  Determination of enantiomeric impurity of linezolid by capillary electrophoresis using heptakis-(2,3-diacetyl-6-sulfato)-beta-cyclodextrin. , 2008, Journal of chromatography. A.

[20]  Yoshihisa Inoue,et al.  Chirality-sensing supramolecular systems. , 2008, Chemical reviews.

[21]  M. Swaminathan,et al.  Flourimetric and prototropic studies on the inclusion complexation of 2-amino and 4-aminodiphenyl ethers with β-cyclodextrin: Unusual behavior of 4-aminodiphenyl ether , 2007 .

[22]  Zhi‐Wu Yu,et al.  Validity and Reliability of Benesi-Hildebrand Method , 2007 .

[23]  Thorsteinn Loftsson,et al.  Cyclodextrins as pharmaceutical solubilizers. , 2007, Advanced drug delivery reviews.

[24]  F. Mendizábal,et al.  Studies of inclusion complexes of natural and modified cyclodextrin with (+)catechin by NMR and molecular modeling. , 2007, Bioorganic & medicinal chemistry.

[25]  A. Maheshwari,et al.  1H NMR spectroscopic study of complexation of citalopram with β‐cyclodextrin in aqueous solution , 2007, Magnetic resonance in chemistry : MRC.

[26]  A. I. Olives,et al.  The role of β-cyclodextrin and hydroxypropyl β-cyclodextrin in the secondary chemical equilibria associated to the separation of β-carbolines by HPLC , 2007 .

[27]  Ramón Garduño-Juárez,et al.  Chiral discrimination of ibuprofen isomers in β-cyclodextrin inclusion complexes: experimental (NMR) and theoretical (MD, MM/GBSA) studies , 2006 .

[28]  Shaohua Zhang,et al.  Inclusion Complexes of β-Cyclodextrin with Ionic Liquid Surfactants , 2006 .

[29]  S. Gould,et al.  2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review , 2005 .

[30]  S. Gould,et al.  2-Hydroxypropyl-b-cyclodextrin ( HP-bCD ) : A toxicology review , 2005 .

[31]  L. Kenne,et al.  1H-NMR Studies of the Inclusion Complexes between α-Cyclodextrin and Adamantane Derivatives Using Both Exchangeable Hydroxy Protons and Non-Exchangeable Aliphatic Protons , 2004 .

[32]  W. Koźmiński,et al.  NMR Studies of Chiral Recognition by Cyclodextrins , 2004 .

[33]  G. Giester,et al.  Supramolecular Recognition and Structural Elucidation of Inclusion Complexes of an Achiral Carbene Precursor in β- and Permethylated β-Cyclodextrin , 2004 .

[34]  Yu Liu,et al.  Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified beta-cyclodextrins possessing simple aromatic tethers. , 2004, The Journal of organic chemistry.

[35]  J. Ballon,et al.  Enantioseparation of Flobufen with Cyclodextrins Studied by Capillary Electrophoresis and NMR , 2001, Pharmaceutical Research.

[36]  T. Wenzel,et al.  Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. , 2003, Chirality.

[37]  A. Odermatt,et al.  A rapid screening assay for inhibitors of 11beta-hydroxysteroid dehydrogenases (11beta-HSD): flavanone selectively inhibits 11beta-HSD1 reductase activity. , 2003, Molecular and cellular endocrinology.

[38]  J. Breitkreutz,et al.  Mechanistic study on the opposite migration order of the enantiomers of ketamine with α‐ and β‐cyclodextrin in capillary electrophoresis , 2002 .

[39]  I. Shehatta Cyclodextrins as Enhancers of the Aqueous Solubility of the Anthelmintic Drug Mebendazole: Thermodynamic Considerations , 2002 .

[40]  G. Tárkányi,et al.  Quantitative approach for the screening of cyclodextrins by nuclear magnetic resonance spectroscopy in support of chiral separations in liquid chromatography and capillary electrophoresis enantioseparation of norgestrel with alpha-, beta- and gamma-cyclodextrins. , 2002, Journal of chromatography. A.

[41]  Q. Guo,et al.  The Driving Forces in the Inclusion Complexation of Cyclodextrins , 2002 .

[42]  Yoshihisa Inoue,et al.  Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-beta-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and coulombic interactions. , 2002, Journal of the American Chemical Society.

[43]  U. Holzgrabe,et al.  Study on the chiral recognition of the enantiomers of ephedrine derivatives with neutral and sulfated heptakis(2,3-O-diacetyl)-beta-cyclodextrins using capillary electrophoresis, UV, nuclear magnetic resonance spectroscopy and mass spectrometry. , 2001, Journal of chromatography. A.

[44]  Keiji Hirose A Practical Guide for the Determination of Binding Constants , 2001 .

[45]  E. R. Reynolds,et al.  Characterization of inclusion complexes of betamethasone-related steroids with cyclodextrins using high-performance liquid chromatography. , 2000, Journal of chromatography. A.

[46]  M. Schmid,et al.  Recent progress in chiral separation principles in capillary electrophoresis , 2000, Electrophoresis.

[47]  L. Fielding Determination of Association Constants (Ka) from Solution NMR Data , 2000 .

[48]  Y. Inoue,et al.  Direct Correlation between Complex Conformation and Chiral Discrimination upon Inclusion of Amino Acid Derivatives by β- and γ-Cyclodextrins , 2000 .

[49]  Gerhard Hummer,et al.  New perspectives on hydrophobic effects , 2000 .

[50]  Yoshihisa Inoue,et al.  Chiral Recognition Thermodynamics of β-Cyclodextrin: The Thermodynamic Origin of Enantioselectivity and the Enthalpy−Entropy Compensation Effect , 2000 .

[51]  S. Fanali,et al.  Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors. , 2000, Journal of chromatography. A.

[52]  Y. Inoue,et al.  Direct correlation between complex conformation and chiral discrimination upon inclusion of amino acid derivatives by beta- and gamma-cyclodextrins. , 2000, Organic letters.

[53]  L. Szente,et al.  Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications. , 2000, Journal of pharmaceutical sciences.

[54]  E. Álvarez-Parrilla,et al.  Complexation of Sodium Cholate and Sodium Deoxycholate by β-Cyclodextrin and Derivatives† , 1999 .

[55]  A. Torrens,et al.  Chiral discrimination of the analgesic cizolirtine by using cyclodextrins: A (1)H NMR study on the solution structures of their host-guest complexes. , 1999, Chirality.

[56]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry , 1998 .

[57]  Keiko Takahashi Organic Reactions Mediated by Cyclodextrins , 1998 .

[58]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[59]  H. Schneider,et al.  NMR Studies of Cyclodextrins and Cyclodextrin Complexes. , 1998, Chemical reviews.

[60]  F. Hirayama,et al.  Cyclodextrin Drug Carrier Systems. , 1998, Chemical reviews.

[61]  Liu Yu,et al.  Molecular recognition study on a supramolecular system (XV) , 1998 .

[62]  Kenny B. Lipkowitz,et al.  Applications of Computational Chemistry to the Study of Cyclodextrins. , 1998, Chemical reviews.

[63]  K. A. Connors,et al.  The Stability of Cyclodextrin Complexes in Solution. , 1997, Chemical reviews.

[64]  Bao-hang Han,et al.  Molecular Recognition Study of a Supramolecular System , 1997 .

[65]  C. Jaime,et al.  Host/Guest Interactions and NMR Spectroscopy. A Computer Program for Association Constant Determination , 1997 .

[66]  Robert N. Goldberg,et al.  Thermodynamic and Nuclear Magnetic Resonance Study of the Reactions of α- and β-Cyclodextrin with Acids, Aliphatic Amines, and Cyclic Alcohols , 1997 .

[67]  U. Holzgrabe,et al.  Chiral discrimination by NMR spectroscopy of ephedrine and N-methylephedrine induced by β-cyclodextrin, heptakis(2,3-di-O-acetyl)β-cyclodextrin, and heptakis (6-O-acetyl)β-cyclodextrin , 1997 .

[68]  J. Berridge,et al.  Chiral recognition in liquid chromatography utilising chargeable cyclodextrins for resolution of doxazosin enantiomers. , 1997, Chirality.

[69]  M. Parissi-poulou,et al.  Evaluation of the Chromatographic Behaviour of Fluoxetine and Norfluoxetine Using Different Cyclodextrins as Mobile Phase Additives and Fluorimetric Detection , 1996 .

[70]  A. Mele,et al.  1H NMR and Molecular Modeling Study on the Inclusion Complex β-Cyclodextrin−Indomethacin , 1996 .

[71]  P. Salvadori,et al.  NMR Chiral Analysis of Aromatic Hydrocarbons by Using Permethylated β-Cyclodextrin as Chiral Solvating Agent , 1996 .

[72]  C. Bertucci,et al.  NMR investigation of the interaction of (+)‐ and (−)‐flurbiprofen with β‐cyclodextrin , 1996 .

[73]  S. Immel,et al.  Per‐O‐methylated α‐ and β‐CD: Cyclodextrins with Inverse Hydrophobicity , 1996 .

[74]  Robert N. Goldberg,et al.  Thermodynamic and Nuclear Magnetic Resonance Study of the Interactions of .alpha.- and .beta.-Cyclodextrin with Model Substances: Phenethylamine, Ephedrines, and Related Substances , 1995 .

[75]  P. Trulove,et al.  ROESY NMR of Basic Ambient-Temperature Chloroaluminate Ionic Liquids , 1995 .

[76]  Yoshihisa Inoue,et al.  Calorimetric titration of inclusion complexation with modified .beta.-cyclodextrins. Enthalpy-entropy compensation in host-guest complexation: from ionophore to cyclodextrin and cyclophane , 1993 .

[77]  A. Casy Chiral discrimination by NMR spectroscopy , 1993 .

[78]  Yoshihisa Inoue,et al.  Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with .alpha.-, .beta.-, and .gamma.-cyclodextrins: enthalpy-entropy compensation , 1993 .

[79]  J. Zung,et al.  ALCOHOL SIZE AS A FACTOR IN THE TERNARY COMPLEXES FORMED WITH PYRENE AND BETA -CYCLODEXTRIN , 1991 .

[80]  A. Casy,et al.  Application of cyclodextrins to chiral analysis by 1H NMR spectroscopy , 1988 .

[81]  Martin Karplus,et al.  Vicinal Proton Coupling in Nuclear Magnetic Resonance , 1963 .

[82]  M. Karplus Contact Electron‐Spin Coupling of Nuclear Magnetic Moments , 1959 .