Carbon nanotubes as nanoelectromechanical systems

We theoretically study the interplay between electrical and mechanical properties of suspended, doubly clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the nanotube and the gate(s) depends on the distance between them. This dependence modifies the usual Coulomb models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds acquire a (small) curvature. We also show that bistability in the tube position occurs and that tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental verification of these predictions is possible in suspended tubes of sub-micron length.

[1]  A Erbe,et al.  Nanomechanical resonator shuttling single electrons at radio frequencies. , 2001, Physical review letters.

[2]  Volkov,et al.  Acoustoelectric effects in carbon nanotubes , 2000, Physical review letters.

[3]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[4]  F. Capasso,et al.  Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force , 2001, Science.

[5]  C. Beenakker,et al.  Electromechanical noise in a diffusive conductor. , 2001, Physical review letters.

[6]  Quantum dots in suspended single-wall carbon nanotubes , 2001 .

[7]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[8]  R. Krotkov,et al.  STEPWISE AND HYSTERETIC TRANSPORT BEHAVIOR OF AN ELECTROMECHANICAL CHARGE SHUTTLE , 1999 .

[9]  Quanshui Zheng,et al.  Multiwalled carbon nanotubes as gigahertz oscillators. , 2002, Physical review letters.

[10]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[11]  P Kim,et al.  ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[12]  C. Journet,et al.  Tuning of nanotube mechanical resonances by electric field pulling. , 2002, Physical review letters.

[13]  M. Roukes Nanoelectromechanical systems face the future , 2001 .

[14]  J. Kinaret,et al.  A carbon-nanotube-based nanorelay , 2002, cond-mat/0208427.

[15]  Gang Gu,et al.  Simple method to prepare individual suspended nanofibers , 2002 .

[16]  T. Kenny,et al.  Attonewton force detection using ultrathin silicon cantilevers , 1997 .

[17]  C. Weiss,et al.  Accuracy of a mechanical single-electron shuttle , 1999, cond-mat/9904149.

[18]  Seiji Akita,et al.  Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope , 2001 .

[19]  Perturbation of tunneling processes by mechanical degrees of freedom in mesoscopic junctions. , 1995, Physical review. B, Condensed matter.

[20]  Accessibility of quantum effects in mesomechanical systems , 2001 .

[21]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[22]  Qian Wang,et al.  Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems , 2002 .

[23]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[24]  M. Roukes,et al.  A nanometre-scale mechanical electrometer , 1998, Nature.

[25]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[26]  Russell M. Taylor,et al.  Controlled placement of an individual carbon nanotube onto a microelectromechanical structure , 2002 .

[27]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[28]  D. Galvão,et al.  Molecular Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators , 2002, Physical review letters.

[29]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[30]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.