Carbon nanotubes as nanoelectromechanical systems
暂无分享,去创建一个
Y. Blanter | H. V. D. Zant | L. Gurevich | S. Sapmaz | H. S. J. van der Zant | L. Gurevich | Ya. M. Blanter | S. Sapmaz
[1] A Erbe,et al. Nanomechanical resonator shuttling single electrons at radio frequencies. , 2001, Physical review letters.
[2] Volkov,et al. Acoustoelectric effects in carbon nanotubes , 2000, Physical review letters.
[3] Meijie Tang,et al. Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.
[4] F. Capasso,et al. Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force , 2001, Science.
[5] C. Beenakker,et al. Electromechanical noise in a diffusive conductor. , 2001, Physical review letters.
[6] Quantum dots in suspended single-wall carbon nanotubes , 2001 .
[7] N. Aluru,et al. Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .
[8] R. Krotkov,et al. STEPWISE AND HYSTERETIC TRANSPORT BEHAVIOR OF AN ELECTROMECHANICAL CHARGE SHUTTLE , 1999 .
[9] Quanshui Zheng,et al. Multiwalled carbon nanotubes as gigahertz oscillators. , 2002, Physical review letters.
[10] A. Rinzler,et al. Carbon nanotube actuators , 1999, Science.
[11] P Kim,et al. ナノチューブナノピンセット | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .
[12] C. Journet,et al. Tuning of nanotube mechanical resonances by electric field pulling. , 2002, Physical review letters.
[13] M. Roukes. Nanoelectromechanical systems face the future , 2001 .
[14] J. Kinaret,et al. A carbon-nanotube-based nanorelay , 2002, cond-mat/0208427.
[15] Gang Gu,et al. Simple method to prepare individual suspended nanofibers , 2002 .
[16] T. Kenny,et al. Attonewton force detection using ultrathin silicon cantilevers , 1997 .
[17] C. Weiss,et al. Accuracy of a mechanical single-electron shuttle , 1999, cond-mat/9904149.
[18] Seiji Akita,et al. Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope , 2001 .
[19] Perturbation of tunneling processes by mechanical degrees of freedom in mesoscopic junctions. , 1995, Physical review. B, Condensed matter.
[20] Accessibility of quantum effects in mesomechanical systems , 2001 .
[21] S. Timoshenko,et al. Theory of elasticity , 1975 .
[22] Qian Wang,et al. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems , 2002 .
[23] Paul L. McEuen,et al. Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.
[24] M. Roukes,et al. A nanometre-scale mechanical electrometer , 1998, Nature.
[25] Charles M. Lieber,et al. Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.
[26] Russell M. Taylor,et al. Controlled placement of an individual carbon nanotube onto a microelectromechanical structure , 2002 .
[27] J. Bernholc,et al. Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.
[28] D. Galvão,et al. Molecular Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators , 2002, Physical review letters.
[29] P. McEuen,et al. Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.
[30] J. M. Worlock,et al. Measurement of the quantum of thermal conductance , 2000, Nature.