SIMPRE: A software package to calculate crystal field parameters, energy levels, and magnetic properties on mononuclear lanthanoid complexes based on charge distributions

This work presents a fortran77 code based on an effective electrostatic model of point charges around a rare earth ion. The program calculates the full set of crystal field parameters, energy levels spectrum, and wave functions, as well as the magnetic properties such as the magnetization, the temperature dependence of the magnetic susceptibility, and the Schottky contribution to the specific heat. It is designed for real systems that need not bear ideal symmetry and it is able to determine the easy axis of magnetization. Its systematic application to different coordination environments allows magneto‐structural studies. The package has already been successfully applied to several mononuclear systems with single‐molecule magnetic behavior. The determination of effective point charge parameters in these studies facilitates its application to new systems. In this article, we illustrate its usage with two example studies: (a) an ideal cubic structure coordinating a lanthanoid ion and (b) a system with slow relaxation of the magnetization, LiHoxY(1‐x)F4. © 2013 Wiley Periodicals, Inc.

[1]  Song Gao,et al.  An organometallic single-ion magnet. , 2011, Journal of the American Chemical Society.

[2]  S. Blundell,et al.  Storing quantum information in chemically engineered nanoscale magnets , 2009 .

[3]  J. Long,et al.  Slow magnetic relaxation in homoleptic trispyrazolylborate complexes of neodymium(III) and uranium(III). , 2012, Dalton transactions.

[4]  J. Long,et al.  Slow magnetic relaxation in a trigonal prismatic uranium(III) complex. , 2009, Journal of the American Chemical Society.

[5]  Hutchings POINT CHARGE CALCULATIONS OF ENERGY LEVELS OF MAGNETIC IONS IN CRYSTALLINE ELECTRIC FIELDS. Technical Note 13 , 1963 .

[6]  Katie R. Meihaus,et al.  Observation of a secondary slow relaxation process for the field-induced single-molecule magnet U(H2BPz2)3. , 2010, Journal of the American Chemical Society.

[7]  Dante Gatteschi,et al.  Magnetic anisotropy of dysprosium(III) in a low-symmetry environment: a theoretical and experimental investigation. , 2009, Journal of the American Chemical Society.

[8]  A. Caneschi,et al.  Giant field dependence of the low temperature relaxation of the magnetization in a dysprosium(III)-DOTA complex. , 2011, Chemical communications.

[9]  J. Sesé,et al.  Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: the series [LnP5W30O110]12- (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). , 2012, Journal of the American Chemical Society.

[10]  M. Merkx,et al.  Multivalent choline dendrimers as potent inhibitors of pneumococcal cell-wall hydrolysis. , 2009, Angewandte Chemie.

[11]  S. Carretta,et al.  Low-energy Spectrum of a Tm-based Double-decker Complex , 2009 .

[12]  L. Seijo,et al.  Structural effects and 4f-5d transition shifts induced by La codoping in Ce-doped yttrium aluminum garnet: First-principles study , 2010 .

[13]  José J. Baldoví,et al.  Modeling the properties of lanthanoid single-ion magnets using an effective point-charge approach. , 2012, Dalton transactions.

[14]  W. Huiskamp,et al.  Field dependent specific heat study of the dipolar Ising ferromagnet LiHoF4 , 1984 .

[15]  R. Elliott,et al.  The theory of the magnetic properties of rare earth salts: cerium ethyl sulphate , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  P. Stamp,et al.  Spin-based quantum computers made by chemistry: hows and whys , 2008, 0807.1986.

[17]  E. Coronado,et al.  Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9- and [Ln(beta2-SiW11O39)2]13- (Ln(III) = Tb, Dy, Ho, Er, Tm, and Yb). , 2009, Inorganic chemistry.

[18]  A. Caneschi,et al.  Magnetic anisotropy in a dysprosium/DOTA single-molecule magnet: beyond simple magneto-structural correlations. , 2012, Angewandte Chemie.

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  José J. Baldoví,et al.  Modeling the properties of uranium-based single ion magnets , 2013 .

[21]  H. Buckmaster TABLES OF MATRIX ELEMENTS FOR THE OPERATORS , 1962 .

[22]  B. N. Figgis,et al.  Introduction to Ligand Fields , 1966 .

[23]  S. Edvardsson,et al.  Role of the electrostatic model in calculating rare-earth crystal-field parameters , 1998 .

[24]  I. D. Ryabov,et al.  On the operator equivalents and the crystal-field and spin Hamiltonian parameters , 2009 .

[25]  Liviu F Chibotaru,et al.  The origin of nonmagnetic Kramers doublets in the ground state of dysprosium triangles: evidence for a toroidal magnetic moment. , 2008, Angewandte Chemie.

[26]  M. F. Reid,et al.  Spectroscopy of High-Energy States of Lanthanide Ions , 2010, 1002.3179.

[27]  E. Coronado,et al.  Multi-frequency EPR studies of a mononuclear holmium single-molecule magnet based on the polyoxometalate [Ho(III)(W5O18)2]9-. , 2012, Dalton transactions.

[28]  H. Christensen Spectroscopic analysis of LiHoF4 and LiErF4 , 1979 .

[29]  S. Koshihara,et al.  Lanthanide double-decker complexes functioning as magnets at the single-molecular level. , 2003, Journal of the American Chemical Society.

[30]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[31]  C. Rudowicz,et al.  Transformation relations for the conventional Okq and normalised O'kq Stevens operator equivalents with k=1 to 6 and -k⩽q⩽k , 1985 .

[32]  M. Crommie Manipulating Magnetism in a Single Molecule , 2005, Science.

[33]  Rare-earth solid-state qubits. , 2007, Nature nanotechnology.

[34]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[35]  L. Sorace,et al.  Lanthanides in molecular magnetism: old tools in a new field. , 2011, Chemical Society reviews.

[36]  José J. Baldoví,et al.  Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes. , 2012, Inorganic chemistry.

[37]  M. Affronte,et al.  Molecular spins for quantum information technologies. , 2011, Chemical Society reviews.

[38]  L. Pereira,et al.  Single-ion magnet behaviour in [U(Tp(Me2))2I]. , 2012, Dalton transactions.

[39]  N. Ishikawa,et al.  Determination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. , 2003, Inorganic chemistry.

[40]  I. Ryabov On the generation of operator equivalents and the calculation of their matrix elements. , 1999, Journal of magnetic resonance.

[41]  Gang Su,et al.  A mononuclear dysprosium complex featuring single-molecule-magnet behavior. , 2010, Angewandte Chemie.

[42]  P. Hansen,et al.  Magnetic properties of lithium rare-earth fluorides: Ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites , 1975 .

[43]  K. Stevens Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions , 1952 .