Functional Identification of Interneurons Responsible for Left-Right Coordination of Hindlimbs in Mammals

[1]  D. McCrea,et al.  Use of sucrose gap for recording postsynaptic population potentials evoked by single interneurones in spinal motoneurones , 1981, Brain Research.

[2]  E Jankowska,et al.  Post‐synaptic potentials in a population of motoneurones following activity of single interneurones in the cat. , 1983, The Journal of physiology.

[3]  J. Iles,et al.  Motor neuron columns in the lumbar spinal cord of the rat , 1983, The Journal of comparative neurology.

[4]  J. Clarke,et al.  Activity of commissural interneurons in spinal cord of Xenopus embryos. , 1984, Journal of neurophysiology.

[5]  N Dale,et al.  Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord. , 1985, The Journal of physiology.

[6]  Jack L. Feldman,et al.  In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion , 1987, Journal of Neuroscience Methods.

[7]  N. Kudo,et al.  N-Methyl-d,l-aspartate-induced locomotor activity in a spinal cord-indlimb muscles preparation of the newborn rat studied in vitro , 1987, Neuroscience Letters.

[8]  N. Kudo,et al.  Morphological and physiological studies of development of the monosynaptic reflex pathway in the rat lumbar spinal cord. , 1987, The Journal of physiology.

[9]  J. Witmer,et al.  Statistics for the Life Sciences , 1990 .

[10]  S. Grillner,et al.  Presynaptic GABAA and GABAB Receptor‐mediated Phasic Modulation in Axons of Spinal Motor Interneurons , 1991, The European journal of neuroscience.

[11]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  A. Lev-Tov,et al.  In vitro studies of prolonged synaptic depression in the neonatal rat spinal cord. , 1992, The Journal of physiology.

[13]  F. Clarac,et al.  Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. , 1992, The Journal of physiology.

[14]  J. Buchanan,et al.  Activities of spinal neurons during brain stem-dependent fictive swimming in lamprey. , 1995, Journal of neurophysiology.

[15]  M. Nieto Molecular Biology of Axon Guidance , 1996, Neuron.

[16]  L. Ballerini,et al.  Localization of Rhythmogenic Networks Responsible for Spontaneous Bursts Induced by Strychnine and Bicuculline in the Rat Isolated Spinal Cord , 1996, The Journal of Neuroscience.

[17]  O. Kiehn,et al.  Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. , 1996, Journal of neurophysiology.

[18]  O Kiehn,et al.  Distribution of Networks Generating and Coordinating Locomotor Activity in the Neonatal Rat Spinal Cord In Vitro: A Lesion Study , 1996, The Journal of Neuroscience.

[19]  Jonathan R. Wolpaw,et al.  The complex structure of a simple memory , 1997, Trends in Neurosciences.

[20]  A. Roberts,et al.  Neurons, Networks and Motor Behaviour , 1997 .

[21]  S. Grillner,et al.  Vertebrate Locomotion‐A Lamprey Perspective a , 1998, Annals of the New York Academy of Sciences.

[22]  O. Kiehn,et al.  Distribution of Central Pattern Generators for Rhythmic Motor Outputs in the Spinal Cord of Limbed Vertebrates a , 1998, Annals of the New York Academy of Sciences.

[23]  M Beato,et al.  Extracellular K+ induces locomotor-like patterns in the rat spinal cord in vitro: comparison with NMDA or 5-HT induced activity. , 1998, Journal of neurophysiology.

[24]  B. Conway,et al.  How Do We Approach the Locomotor Network in the Mammalian Spinal Cord? a , 1998, Annals of the New York Academy of Sciences.

[25]  J. Cazalets,et al.  Presynaptic GABAergic control of the locomotor drive in the isolated spinal cord of neonatal rats , 1999, The European journal of neuroscience.

[26]  O Kiehn,et al.  Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord. , 1999, Journal of neurophysiology.

[27]  D. V. Vactor Axon guidance , 1999, Current Biology.

[28]  J. Rubenstein,et al.  Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling , 1999, Nature.

[29]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[30]  O Kiehn,et al.  Characterization of commissural interneurons in the lumbar region of the neonatal rat spinal cord , 1999, The Journal of comparative neurology.

[31]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[32]  S. Grillner,et al.  Activity-Dependent Metaplasticity of Inhibitory and Excitatory Synaptic Transmission in the Lamprey Spinal Cord Locomotor Network , 1999, The Journal of Neuroscience.

[33]  R. Brownstone,et al.  An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks , 1999, Brain Research.

[34]  Michael J. O'Donovan,et al.  Identification of an Interneuronal Population that Mediates Recurrent Inhibition of Motoneurons in the Developing Chick Spinal Cord , 1999, The Journal of Neuroscience.

[35]  Michael J. O'Donovan,et al.  Topographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord. , 2000, Journal of neurophysiology.

[36]  Alan Roberts,et al.  Early functional organization of spinal neurons in developing lower vertebrates , 2000, Brain Research Bulletin.

[37]  O Kiehn,et al.  Spike coding during locomotor network activity in ventrally located neurons in the isolated spinal cord from neonatal rat. , 2000, Journal of neurophysiology.

[38]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[39]  Ole Kiehn,et al.  Motor coordination without action potentials in the mammalian spinal cord , 2000, Nature Neuroscience.

[40]  A. Bradley,et al.  Engineering chromosomal rearrangements in mice , 2001, Nature Reviews Genetics.

[41]  K. Sharma,et al.  Spinal Motor Circuits Merging Development and Function , 2001, Neuron.

[42]  S. Hochman,et al.  Serotonin 5‐HT2 receptor activation induces a long‐lasting amplification of spinal reflex actions in the rat , 2001, The Journal of physiology.

[43]  Z. Kaprielian,et al.  Axon guidance at the midline choice point , 2001, Developmental dynamics : an official publication of the American Association of Anatomists.

[44]  William Wisden,et al.  Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance , 2001, Nature.

[45]  M. Goulding,et al.  Evx1 Is a Postmitotic Determinant of V0 Interneuron Identity in the Spinal Cord , 2001, Neuron.

[46]  S. Pfaff,et al.  Transcriptional networks regulating neuronal identity in the developing spinal cord , 2001, Nature Neuroscience.

[47]  Martyn Goulding,et al.  The formation of sensorimotor circuits , 2002, Current Opinion in Neurobiology.

[48]  Eve Marder,et al.  Cellular, synaptic and network effects of neuromodulation , 2002, Neural Networks.

[49]  Ole Kiehn,et al.  Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat , 2002, The Journal of comparative neurology.

[50]  Vincenzo De Paola,et al.  ETS Gene Pea3 Controls the Central Position and Terminal Arborization of Specific Motor Neuron Pools , 2002, Neuron.

[51]  S. Arber,et al.  GDNF Acts through PEA3 to Regulate Cell Body Positioning and Muscle Innervation of Specific Motor Neuron Pools , 2002, Neuron.

[52]  J. Cazalets,et al.  The respective contribution of lumbar segments to the generation of locomotion in the isolated spinal cord of newborn rat , 2002, The European journal of neuroscience.

[53]  Ole Kiehn,et al.  Firing Properties of Identified Interneuron Populations in the Mammalian Hindlimb Central Pattern Generator , 2002, The Journal of Neuroscience.

[54]  J. Flanagan,et al.  Axonal Protein Synthesis Provides a Mechanism for Localized Regulation at an Intermediate Target , 2002, Cell.

[55]  Ole Kiehn,et al.  Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats , 2003, The Journal of comparative neurology.