CONCURRENT, DISTRIBUTED CONTROL OF SACCADE INITIATION IN THE FRONTAL EYE FIELD AND SUPERIOR COLLICULUS

[1]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[2]  L M Optican,et al.  Superior colliculus neurons mediate the dynamic characteristics of saccades. , 1991, Journal of neurophysiology.

[3]  Jeffrey N. Rouder,et al.  Modeling Response Times for Two-Choice Decisions , 1998 .

[4]  J Duncan,et al.  Responses of neurons in macaque area V4 during memory-guided visual search. , 2001, Cerebral cortex.

[5]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[6]  Edward J. Tehovnik,et al.  Reversible inactivation of macaque frontal eye field , 1997, Experimental Brain Research.

[7]  Y Agid,et al.  Cortical control of reflexive visually-guided saccades. , 1991, Brain : a journal of neurology.

[8]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[9]  J. K. Harting,et al.  Connectional organization of the superior colliculus , 1984, Trends in Neurosciences.

[10]  R J Krauzlis,et al.  Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. , 2000, Journal of neurophysiology.

[11]  G. Leichnetz,et al.  The prefrontal corticotectal projection in the monkey; An anterograde and retrograde horseradish peroxidase study , 1981, Neuroscience.

[12]  D Guitton,et al.  Fixation and orientation control by the tecto-reticulo-spinal system in the cat whose head is unrestrained. , 1989, Revue neurologique.

[13]  R. Wurtz,et al.  The Neurobiology of Saccadic Eye Movements , 1989 .

[14]  E. Keller,et al.  Activity of visuomotor burst neurons in the superior colliculus accompanying express saccades. , 1996, Journal of neurophysiology.

[15]  M. Schlag-Rey,et al.  Antisaccade performance predicted by neuronal activity in the supplementary eye field , 1997, Nature.

[16]  Jeffrey D Schall,et al.  The neural selection and control of saccades by the frontal eye field. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  R. Klein,et al.  Visual offsets facilitate saccadic latency: does predisengagement of visuospatial attention mediate this gap effect? , 1993, Journal of experimental psychology. Human perception and performance.

[18]  Alan Kingstone,et al.  Visual offsets facilitate saccadic latency: Does predisengagement of visuospatial attention mediate this gap effect? , 1993 .

[19]  R J Krauzlis,et al.  Shared motor error for multiple eye movements. , 1997, Science.

[20]  J. K. Harting Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta) , 1977, The Journal of comparative neurology.

[21]  P. Schiller,et al.  Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. , 1971, Journal of neurophysiology.

[22]  N. P. Bichot,et al.  9 Visual Processing in the Macaque Frontal Eye Field , 2003 .

[23]  J. V. Van Gisbergen,et al.  Stimulation in the rostral pole of monkey superior colliculus: effects on vergence eye movements , 2000, Experimental Brain Research.

[24]  P. Glimcher,et al.  Quantitative analysis of substantia nigra pars reticulata activity during a visually guided saccade task. , 1999, Journal of neurophysiology.

[25]  R H Wurtz,et al.  Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. , 1976, Journal of neurophysiology.

[26]  M. Segraves,et al.  Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. , 1999, Journal of neurophysiology.

[27]  J. Schall,et al.  Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. , 1998, Journal of neurophysiology.

[28]  D. Sparks,et al.  Size and distribution of movement fields in the monkey superior colliculus , 1976, Brain Research.

[29]  R. Wurtz,et al.  Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. , 1993, Journal of neurophysiology.

[30]  C. Scudder,et al.  The microscopic anatomy and physiology of the mammalian saccadic system , 1996, Progress in Neurobiology.

[31]  C. Bruce,et al.  Physiological correlate of fixation disengagement in the primate's frontal eye field. , 1994, Journal of neurophysiology.

[32]  G. Aston-Jones,et al.  Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[34]  D. Pélisson,et al.  Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges. , 1991, Journal of neurophysiology.

[35]  R. Carpenter,et al.  Countermanding saccades in humans , 1999, Vision Research.

[36]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[37]  D. Sparks Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset , 1978, Brain Research.

[38]  A. Jacobs,et al.  The effects of target discriminability and retinal eccentricity on saccade latencies: An analysis in terms of variable-criterion theory , 1990, Psychological research.

[39]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movements. , 1972, Journal of neurophysiology.

[40]  W. Becker,et al.  An analysis of the saccadic system by means of double step stimuli , 1979, Vision Research.

[41]  A. Cowey,et al.  Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey , 1984, Neuroscience.

[42]  P. E. Hallett,et al.  Primary and secondary saccades to goals defined by instructions , 1978, Vision Research.

[43]  P. Reuter-Lorenz,et al.  The reduction of saccadic latency by prior offset of the fixation point: An analysis of the gap effect , 1991, Perception & psychophysics.

[44]  J. Lynch,et al.  Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport , 2004, Experimental Brain Research.

[45]  J W McClurkin,et al.  The visual superior colliculus and pulvinar. , 1989, Reviews of oculomotor research.

[46]  J. Schall,et al.  Countermanding saccades in macaque , 1995, Visual Neuroscience.

[47]  J. K. Harting,et al.  Ascending pathways from the monkey superior colliculus: An autoradiographic analysis , 1980, The Journal of comparative neurology.

[48]  Raymond M. Klein,et al.  The Magnitude of the Fixation Offset Effect with Endogenously and Exogenously Controlled Saccades , 1996, Journal of Cognitive Neuroscience.

[49]  R. Carpenter,et al.  Movements of the Eyes , 1978 .

[50]  D. Munoz,et al.  Evidence for interactions between target selection and visual fixation for saccade generation in humans , 2004, Experimental Brain Research.

[51]  R. Wurtz,et al.  Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. , 1993, Journal of neurophysiology.

[52]  G. Leichnetz,et al.  Cortical projections to nuclei adjacent to oculomotor complex in the medial dien‐mesencephalic tegmentum in the monkey , 1984, The Journal of comparative neurology.

[53]  D. Sparks,et al.  Dissociation of visual and saccade-related responses in superior colliculus neurons. , 1980, Journal of neurophysiology.

[54]  John H. R. Maunsell,et al.  The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. , 1987, Journal of neurophysiology.

[55]  David L. Sparks,et al.  Movement selection in advance of action in the superior colliculus , 1992, Nature.

[56]  P. Goldman-Rakic,et al.  Organization of the nigrothalamocortical system in the rhesus monkey , 1985, The Journal of comparative neurology.

[57]  Jillian H. Fecteau,et al.  Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. , 2002, Progress in brain research.

[58]  Hans Colonius,et al.  Countermanding saccades with auditory stop signals: testing the race model , 2001, Vision Research.

[59]  W. Wolf,et al.  Occurrence of human express saccades depends on stimulus uncertainty and stimulus sequence , 2004, Experimental Brain Research.

[60]  David L. Sparks,et al.  Movement fields of saccade-related burst neurons in the monkey superior colliculus , 1980, Brain Research.

[61]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[62]  D. Munoz,et al.  Reflex suppression in the anti-saccade task is dependent on prestimulus neural processes. , 1998, Journal of neurophysiology.

[63]  J Schlag,et al.  Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei , 1991, The Journal of comparative neurology.

[64]  G. Leichnetz,et al.  Cortical projections to the paramedian tegmental and basilar pons in the monkey , 1984, The Journal of comparative neurology.

[65]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. , 1995, Journal of neurophysiology.

[66]  R. H. S. Carpenter,et al.  Neural computation of log likelihood in control of saccadic eye movements , 1995, Nature.

[67]  K. Hepp,et al.  Frontal eye field projection to the paramedian pontine reticular formation traced with wheat germ agglutinin in the monkey , 1985, Brain Research.

[68]  R. Wurtz,et al.  Interaction of the frontal eye field and superior colliculus for saccade generation. , 2001, Journal of neurophysiology.

[69]  M. Segraves Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. , 1992, Journal of neurophysiology.

[70]  J. K. Harting,et al.  The Mammalian Superior Colliculus: Studies of Its Morphology and Connections , 1984 .

[71]  B. Rogoff,et al.  Questioning assumptions about culture and individuals , 1993, Behavioral and Brain Sciences.

[72]  J. L. Conway,et al.  Deficits in eye movements following frontal eye-field and superior colliculus ablations. , 1980, Journal of neurophysiology.

[73]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. , 1989, Journal of neurophysiology.

[74]  D. Munoz,et al.  Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior. , 1998, Journal of neurophysiology.

[75]  J. Requin,et al.  Changes in neuronal activity of the monkey precentral cortex during preparation for movement. , 1986, Journal of neurophysiology.

[76]  N J Gandhi,et al.  Comparison of saccades perturbed by stimulation of the rostral superior colliculus, the caudal superior colliculus, and the omnipause neuron region. , 1999, Journal of neurophysiology.

[77]  C. Bruce,et al.  Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons , 1988, The Journal of comparative neurology.

[78]  M. Segraves,et al.  Acute activation and inactivation of macaque frontal eye field with GABA-related drugs. , 1995, Journal of neurophysiology.

[79]  D P Munoz,et al.  Neuronal Correlates for Preparatory Set Associated with Pro-Saccades and Anti-Saccades in the Primate Frontal Eye Field , 2000, The Journal of Neuroscience.

[80]  D. Munoz,et al.  Control of saccade initiation in a countermanding task using visual and auditory stop signals , 2000, Experimental Brain Research.

[81]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[82]  D. Munoz,et al.  A neural correlate for the gap effect on saccadic reaction times in monkey. , 1995, Journal of neurophysiology.

[83]  J. Schall Visuomotor Areas of the Frontal Lobe , 1997 .

[84]  A. Fuchs,et al.  Effect of mean reaction time on saccadic responses to two-step stimuli with horizontal and vertical components , 1975, Vision Research.

[85]  A K Moschovakis,et al.  Anatomy and physiology of saccadic long-lead burst neurons recorded in the alert squirrel monkey. I. Descending projections from the mesencephalon. , 1996, Journal of neurophysiology.

[86]  D Guitton,et al.  Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. II. Sustained discharges during motor preparation and fixation. , 1991, Journal of neurophysiology.

[87]  M E Goldberg,et al.  Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields , 1988, The Journal of comparative neurology.

[88]  R. Wurtz,et al.  Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. , 1995, Journal of neurophysiology.

[89]  A K Moschovakis,et al.  Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. , 1988, Journal of neurophysiology.

[90]  J. Lacaille,et al.  Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices. , 1996, Journal of neurophysiology.

[91]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. , 1989, Journal of neurophysiology.

[92]  Robert Nullmeyer,et al.  Human reaction time: Toward a general theory , 1982 .

[93]  D. Sparks,et al.  Population coding of saccadic eye movements by neurons in the superior colliculus , 1988, Nature.

[94]  R. Douglas,et al.  Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades , 2004, Experimental Brain Research.

[95]  A. Graybiel,et al.  Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  R. Wurtz,et al.  Superior Colliculus Cell Responses Related to Eye Movements in Awake Monkeys , 1971, Science.

[97]  D. Munoz,et al.  Influence of stimulus eccentricity and direction on characteristics of pro- and antisaccades in non-human primates. , 2000, Journal of neurophysiology.

[98]  D. Munoz,et al.  Saccadic Probability Influences Motor Preparation Signals and Time to Saccadic Initiation , 1998, The Journal of Neuroscience.

[99]  R. Duncan Luce,et al.  Response Times: Their Role in Inferring Elementary Mental Organization , 1986 .

[100]  A M Graybiel,et al.  The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus , 1985, The Journal of comparative neurology.

[101]  R. Wurtz,et al.  Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. , 2001, Journal of neurophysiology.

[102]  B. Fischer,et al.  Saccadic eye movements after extremely short reaction times in the monkey , 1983, Brain Research.

[103]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[104]  Joshua W. Brown,et al.  Monitoring and Control of Action by the Frontal Lobes , 2002, Neuron.

[105]  R. Klein,et al.  A Model of Saccade Initiation Based on the Competitive Integration of Exogenous and Endogenous Signals in the Superior Colliculus , 2001, Journal of Cognitive Neuroscience.

[106]  R. Wurtz,et al.  Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus. , 2001, Journal of neurophysiology.

[107]  D. Munoz,et al.  On your mark, get set: Brainstem circuitry underlying saccadic initiation , 2000 .

[108]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. 3. Cells discharging before eye movements. , 1972, Journal of neurophysiology.

[109]  D. Munoz,et al.  Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. , 1998, Journal of neurophysiology.

[110]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[111]  R. Wurtz,et al.  Frontal eye field neurons orthodromically activated from the superior colliculus. , 1998, Journal of neurophysiology.

[112]  A. Fuchs,et al.  The brainstem burst generator for saccadic eye movements , 2002, Experimental Brain Research.

[113]  O Hikosaka,et al.  Functional properties of monkey caudate neurons. II. Visual and auditory responses. , 1989, Journal of neurophysiology.

[114]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[115]  M. Saslow Effects of components of displacement-step stimuli upon latency for saccadic eye movement. , 1967, Journal of the Optical Society of America.

[116]  M. Goldberg,et al.  Functional properties of corticotectal neurons in the monkey's frontal eye field. , 1987, Journal of neurophysiology.

[117]  R. Wurtz,et al.  Visual receptive fields of frontal eye field neurons. , 1973, Brain research.

[118]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[119]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  D P Munoz,et al.  Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence. , 1996, Journal of neurophysiology.

[121]  D Guitton,et al.  Movement of neural activity on the superior colliculus motor map during gaze shifts. , 1991, Science.

[122]  E. Keller,et al.  Colliculoreticular organization in primate oculomotor system. , 1977, Journal of neurophysiology.

[123]  M. Cynader,et al.  Receptive-field organization of monkey superior colliculus. , 1972, Journal of neurophysiology.

[124]  R. Wurtz,et al.  Saccadic eye movements following injection of lidocaine into the superior colliculus , 2004, Experimental Brain Research.

[125]  J Schlag,et al.  Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections , 1990, The Journal of comparative neurology.

[126]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[127]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[128]  D P Munoz,et al.  Role of Primate Superior Colliculus in Preparation and Execution of Anti-Saccades and Pro-Saccades , 1999, The Journal of Neuroscience.

[129]  Michele A. Basso,et al.  Modulation of neuronal activity by target uncertainty , 1997, Nature.

[130]  D. Munoz,et al.  Neuronal Activity in Monkey Superior Colliculus Related to the Initiation of Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[131]  S M Ross,et al.  Saccade latency and warning signals: Stimulus onset, offset, and change as warning events , 1980, Perception & psychophysics.

[132]  P. H. Schiller,et al.  The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements , 1998, Nature Neuroscience.

[133]  R. Wurtz,et al.  Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. , 2002, Journal of neurophysiology.

[134]  Ehtibar N. Dzhafarov,et al.  Grice-representability of response time distribution families , 1993 .

[135]  J. Schall,et al.  Neural selection and control of visually guided eye movements. , 1999, Annual review of neuroscience.

[136]  N. Shimizu [Neurology of eye movements]. , 2000, Rinsho shinkeigaku = Clinical neurology.

[137]  Hidehiko Komatsu,et al.  Projections from the functional subdivisions of the frontal eye field to the superior colliculus in the monkey , 1985, Brain Research.

[138]  B. Fischer,et al.  Human express saccades: extremely short reaction times of goal directed eye movements , 2004, Experimental Brain Research.

[139]  G. Logan On the ability to inhibit thought and action , 1984 .

[140]  R. Carpenter,et al.  Saccadic countermanding: a comparison of central and peripheral stop signals , 2001, Vision Research.

[141]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[142]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[143]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[144]  R. Wurtz,et al.  Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. , 1985, Journal of neurophysiology.