Twitter User Geolocation Using a Unified Text and Network Prediction Model

We propose a label propagation approach to geolocation prediction based on Modified Adsorption, with two enhancements:(1) the removal of "celebrity" nodes to increase location homophily and boost tractability, and (2) he incorporation of text-based geolocation priors for test users. Experiments over three Twitter benchmark datasets achieve state-of-the-art results, and demonstrate the effectiveness of the enhancements.

[1]  Cecilia Mascolo,et al.  A Random Walk around the City: New Venue Recommendation in Location-Based Social Networks , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[2]  Derek Ruths,et al.  Geolocation Prediction in Twitter Using Social Networks: A Critical Analysis and Review of Current Practice , 2015, ICWSM.

[3]  Ross Maciejewski,et al.  Understanding Twitter data with TweetXplorer , 2013, KDD.

[4]  David Jurgens,et al.  That's What Friends Are For: Inferring Location in Online Social Media Platforms Based on Social Relationships , 2013, ICWSM.

[5]  Timothy Baldwin,et al.  Geolocation Prediction in Social Media Data by Finding Location Indicative Words , 2012, COLING.

[6]  Jochen L. Leidner,et al.  Detecting geographical references in the form of place names and associated spatial natural language , 2011, SIGSPACIAL.

[7]  Hanan Samet,et al.  Determining the spatial reader scopes of news sources using local lexicons , 2010, GIS '10.

[8]  Jason Baldridge,et al.  Simple supervised document geolocation with geodesic grids , 2011, ACL.

[9]  P. Earle,et al.  OMG Earthquake! Can Twitter Improve Earthquake Response? , 2009 .

[10]  Aron Culotta,et al.  Tweedr: Mining twitter to inform disaster response , 2014, ISCRAM.

[11]  David Allen,et al.  Geotagging one hundred million Twitter accounts with total variation minimization , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[12]  H. T. Kung,et al.  Twitter Geolocation and Regional Classification via Sparse Coding , 2015, ICWSM.

[13]  A. Kirilenko,et al.  Public microblogging on climate change: One year of Twitter worldwide , 2014 .

[14]  Timothy Baldwin,et al.  Exploiting Text and Network Context for Geolocation of Social Media Users , 2015, NAACL.

[15]  Koby Crammer,et al.  New Regularized Algorithms for Transductive Learning , 2009, ECML/PKDD.

[16]  Zoubin Ghahramani,et al.  Learning from labeled and unlabeled data with label propagation , 2002 .

[17]  Nadia Magnenat-Thalmann,et al.  Who, where, when and what: discover spatio-temporal topics for twitter users , 2013, KDD.

[18]  Markus Schedl,et al.  Location-Aware Music Artist Recommendation , 2014, MMM.

[19]  Brendan T. O'Connor,et al.  A Latent Variable Model for Geographic Lexical Variation , 2010, EMNLP.

[20]  Jason Baldridge,et al.  Supervised Text-based Geolocation Using Language Models on an Adaptive Grid , 2012, EMNLP.

[21]  Mohamed M. Mostafa,et al.  More than words: Social networks' text mining for consumer brand sentiments , 2013, Expert Syst. Appl..

[22]  Mans Hulden,et al.  Kernel Density Estimation for Text-Based Geolocation , 2015, AAAI.

[23]  Kyumin Lee,et al.  You are where you tweet: a content-based approach to geo-locating twitter users , 2010, CIKM.

[24]  Jason Baldridge,et al.  Hierarchical Discriminative Classification for Text-Based Geolocation , 2014, EMNLP.

[25]  Huan Liu,et al.  Is the Sample Good Enough? Comparing Data from Twitter's Streaming API with Twitter's Firehose , 2013, ICWSM.

[26]  Alexander J. Smola,et al.  Hierarchical geographical modeling of user locations from social media posts , 2013, WWW.

[27]  Xiaojin Zhu,et al.  Seeing stars when there aren’t many stars: Graph-based semi-supervised learning for sentiment categorization , 2006 .

[28]  Timothy Baldwin,et al.  Text-Based Twitter User Geolocation Prediction , 2014, J. Artif. Intell. Res..