Removing nondeterminism in constant height pushdown automata

We study the descriptional cost of removing nondeterminism in constant height pushdown automata-i.e., pushdown automata with a built-in constant limit on the height of the pushdown. We show a double-exponential size increase when converting a constant height nondeterministic pushdown automaton into an equivalent deterministic device. Moreover, we prove that such a double-exponential blow-up cannot be avoided by certifying its optimality. As a direct consequence, we get that eliminating nondeterminism in classical finite state automata is single-exponential even with the help of a constant height pushdown store.

[1]  Carlo Mereghetti,et al.  Optimal Simulations Between Unary Automata , 1998, STACS.

[2]  Alberto Bertoni,et al.  Trace monoids with idempotent generators and measure-only quantum automata , 2010, Natural Computing.

[3]  Carlo Mereghetti,et al.  Boolean Language Operations on Nondeterministic Automata with a Pushdown of Constant Height , 2013, CSR.

[4]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[5]  Katja Meckel,et al.  Queue Automata of Constant Length , 2013, DCFS.

[6]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[7]  Carlo Mereghetti,et al.  Complementing two-way finite automata , 2007, Inf. Comput..

[8]  Carlo Mereghetti,et al.  The size-cost of Boolean operations on constant height deterministic pushdown automata , 2012, Theor. Comput. Sci..

[9]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[10]  Marek Chrobak,et al.  Errata to: "finite automata and unary languages" , 2003 .

[11]  Zuzana Bednárová,et al.  Two Double-Exponential Gaps for Automata with a Limited Pushdown , 2014, LATA.

[12]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[13]  Andreas Malcher,et al.  Descriptional Complexity of Pushdown Store Languages , 2012, DCFS.

[14]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[15]  Desh Ranjan,et al.  Space Bounded Computations: Review and New Separation Results , 1991, Theor. Comput. Sci..

[16]  Carlo Mereghetti,et al.  Converting two-way nondeterministic unary automata into simpler automata , 2003, Theor. Comput. Sci..

[17]  Christos A. Kapoutsis Size Complexity of Two-Way Finite Automata , 2009, Developments in Language Theory.

[18]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[19]  Carlo Mereghetti,et al.  Two-Way Automata Simulations and Unary Languages , 2000, J. Autom. Lang. Comb..

[20]  Beatrice Palano,et al.  Behaviours of Unary Quantum Automata , 2010, Fundam. Informaticae.

[21]  Andreas Malcher,et al.  Descriptional complexity of two-way pushdown automata with restricted head reversals , 2011, Theor. Comput. Sci..

[22]  Eitan M. Gurari,et al.  Simple Counter Machines and Number-Theoretic Problems , 1979, J. Comput. Syst. Sci..

[23]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[24]  Martin Kutrib,et al.  Descriptional Complexity - An Introductory Survey , 2010, Scientific Applications of Language Methods.

[25]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..

[26]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[27]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[28]  Carlo Mereghetti,et al.  Note on the Succinctness of Deterministic, Nondeterministic, Probabilistic and Quantum Finite Automata , 2001, RAIRO Theor. Informatics Appl..

[29]  Seymour Ginsburg,et al.  One-way stack automata , 1967, JACM.

[30]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[31]  Juraj Hromkovic,et al.  Algorithmics for Hard Problems , 2002, Texts in Theoretical Computer Science An EATCS Series.

[32]  Carlo Mereghetti,et al.  More concise representation of regular languages by automata and regular expressions , 2010, Inf. Comput..