3D lidar imaging for detecting and understanding plant responses and canopy structure.

Understanding and diagnosing plant responses to stress will benefit greatly from three-dimensional (3D) measurement and analysis of plant properties because plant responses are strongly related to their 3D structures. Light detection and ranging (lidar) has recently emerged as a powerful tool for direct 3D measurement of plant structure. Here the use of 3D lidar imaging to estimate plant properties such as canopy height, canopy structure, carbon stock, and species is demonstrated, and plant growth and shape responses are assessed by reviewing the development of lidar systems and their applications from the leaf level to canopy remote sensing. In addition, the recent creation of accurate 3D lidar images combined with natural colour, chlorophyll fluorescence, photochemical reflectance index, and leaf temperature images is demonstrated, thereby providing information on responses of pigments, photosynthesis, transpiration, stomatal opening, and shape to environmental stresses; these data can be integrated with 3D images of the plants using computer graphics techniques. Future lidar applications that provide more accurate dynamic estimation of various plant properties should improve our understanding of plant responses to stress and of interactions between plants and their environment. Moreover, combining 3D lidar with other passive and active imaging techniques will potentially improve the accuracy of airborne and satellite remote sensing, and make it possible to analyse 3D information on ecophysiological responses and levels of various substances in agricultural and ecological applications and in observations of the global biosphere.

[1]  B. Sanwal,et al.  MODERN METHODS OF PLANT ANALYSIS , 1955 .

[2]  Instrument for indirect measurement of diameters , 1968 .

[3]  G. Hickman,et al.  Application of an airborne pulsed laser for near shore bathymetric measurements , 1969 .

[4]  R. Macarthur,et al.  Foliage Profile by Vertical Measurements , 1969 .

[5]  Yoshiaki Shirai,et al.  Recognition of polyhedrons with a range finder , 1971, IJCAI.

[6]  R. Colwell Remote sensing of the environment , 1980, Nature.

[7]  R. Swift,et al.  Water depth measurement using an airborne pulsed neon laser system. , 1980, Applied optics.

[8]  Y. Hashimoto,et al.  A Quantitative Analysis of the Relationships between SO2 or NO2 Sorption and Their Acute Effects on Plant Leaves Using Image Instrumentation , 1981 .

[9]  H. Jones,et al.  Plants and Microclimate. , 1985 .

[10]  Robert N. Colwell,et al.  Manual of remote sensing , 1983 .

[11]  L. E. Link,et al.  Airborne laser topographic mapping results , 1984 .

[12]  J. R. Gibson,et al.  Calibrating an airborne laser profiling system , 1984 .

[13]  G. Riechers Plants and Microclimate , 1984 .

[14]  R. Nelson,et al.  Determining forest canopy characteristics using airborne laser data , 1984 .

[15]  Vern C. Vanderbilt Measuring plant canopy structure , 1985 .

[16]  W. Krabill,et al.  Gross-merchantable timber volume estimation using an airborne lidar system , 1986 .

[17]  Paul S. Heckbert,et al.  Survey of Texture Mapping , 1986, IEEE Computer Graphics and Applications.

[18]  M. Onoe,et al.  Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. , 1987, Plant physiology.

[19]  Ross Nelson,et al.  Estimating forest biomass and volume using airborne laser data , 1988 .

[20]  Yacov Y. Haimes,et al.  Systems and control encyclopedia : Edited by Madan G. Singh , 1988, Autom..

[21]  K Raschke,et al.  Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. , 1989, Plant physiology.

[23]  J. Dungan,et al.  Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. , 1990, Tree physiology.

[24]  C. Wessman Evaluation of canopy biochemistry , 1990 .

[25]  Harold A. Mooney,et al.  Remote Sensing of Biosphere Functioning , 1990 .

[26]  A. Dodge Herbicides and Plant Metabolism: Contributors , 1990 .

[27]  Yasushi Hashimoto,et al.  Measurement techniques in plant science. , 1990 .

[28]  S. M. Ridley,et al.  Herbicides and Plant Metabolism: Glutamine synthetase and its inhibition , 1990 .

[29]  Kenji Omasa,et al.  Image Instrumentation Methods of Plant Analysis , 1990 .

[30]  H. Mooney,et al.  Plant Physiological Ecology-Field Methods and Instrumentation. , 1990 .

[31]  H. Lichtenthaler,et al.  Fluorescence emission spectra of plant leaves and plant constituents , 1991, Radiation and environmental biophysics.

[32]  J. Norman,et al.  Instrument for Indirect Measurement of Canopy Architecture , 1991 .

[33]  D. Häder Image Analysis in Biology , 1992 .

[34]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[35]  Image analysis of stomatal. movements and gas exchange , 1992 .

[36]  Shahriar Negahdaripour,et al.  Direct motion stereo for passive navigation , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  K. Omasa,et al.  Diagnosis of Trees from Helicopter by Thermographic System , 1993 .

[38]  N. Ivanov,et al.  Estimation of the height and angles of orientation of the upper leaves in the maize canopy using stereovision , 1994 .

[39]  J Johansson,et al.  Fluorescence lidar multicolor imaging of vegetation. , 1994, Applied optics.

[40]  Using portable laser EDM for forest traverse surveys , 1995 .

[41]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995 .

[42]  B. Andrieu,et al.  Computer stereo plotting for 3-D reconstruction of a maize canopy , 1995 .

[43]  K. Jon Ranson,et al.  Imaging radar for ecosystem studies , 1995 .

[44]  J. Johansson,et al.  Remote fluorescence measurements of vegetation spectrally resolved and by multi-colour fluorescence imaging , 1996 .

[45]  K. Kurata,et al.  WATER STRESS ESTIMATION OF TOMATO CANOPY BASED ON MACHINE VISION , 1996 .

[46]  Marc Rioux,et al.  A texture-mapping approach for the compression of colored 3D triangulations , 1996, The Visual Computer.

[47]  Francine Heisel,et al.  Detection of vegetation stress via a new high resolution fluorescence imaging system , 1996 .

[48]  J. Welles,et al.  Canopy structure measurement by gap fraction analysis using commercial instrumentation , 1996 .

[49]  H. G. Jones,et al.  IMPROVEMENTS TO INFRA-RED THERMOMETRY FOR IRRIGATION SCHEDULING IN HUMID CLIMATES , 1997 .

[50]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[52]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[53]  C. Tucker,et al.  Increased plant growth in the northern high latitudes from 1981 to 1991 , 1997, Nature.

[54]  J. Peñuelas,et al.  Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees , 1997 .

[55]  M. Flood,et al.  Commercial implications of topographic terrain mapping using scanning airborne laser radar , 1997 .

[56]  P. Falkowski,et al.  Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols , 1998, Biochimica et biophysica acta.

[57]  Du Q. Huynh,et al.  Towards robust metric reconstruction via a dynamic uncalibrated stereo head , 1998, Image Vis. Comput..

[58]  Kenji Omasa,et al.  3-D Color Video Microscopy of Intact Plants: A New Method for Measuring Shape and Growth , 1998 .

[59]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[60]  Kenji Omasa,et al.  Image instrumentation of chlorophyll a fluorescence , 1998, Defense, Security, and Sensing.

[61]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[62]  J. Blair,et al.  Modeling laser altimeter return waveforms over complex vegetation using high‐resolution elevation data , 1999 .

[63]  MICHAEL S. Williams,et al.  Evaluation of the Barr & Stroud FP15 and Criterion 400 Laser Dendrometers for Measuring Upper Stem Diameters and Heights , 1999, Forest Science.

[64]  Annette Menzel,et al.  Growing season extended in Europe , 1999, Nature.

[65]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[66]  Hamlyn G. Jones,et al.  Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling , 1999 .

[67]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[68]  Modeling Surface Structure Derived from Laser Altimeter Return Waveforms Using High-Resolution Elevation Data , 1999 .

[69]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[70]  J. Blair,et al.  The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography , 1999 .

[71]  Hamlyn G. Jones,et al.  Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces , 1999 .

[72]  Mark Cutler,et al.  Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra , 1999 .

[73]  Takuya D. Kawahara,et al.  Development and performance characteristics of laser-induced fluorescence imaging lidar for forestry applications. , 2000 .

[74]  Kenji Omasa,et al.  3-D Remote Sensing of Woody Canopy Heights Using A Scanning Helicopter-borne Lidar System with High Spatial Resolution , 2000 .

[75]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[76]  Hanno Scharr,et al.  Dynamics of leaf and root growth , 2001 .

[77]  Donat-Peter Häder Image analysis : methods and applications , 2001 .

[78]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[79]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[80]  P. Gong,et al.  Model-based conifer-crown surface reconstruction from high-resolution aerial images , 2001 .

[81]  Philip J. Radtke,et al.  Laser point-quadrat sampling for estimating foliage-height profiles in broad-leaved forests , 2001 .

[82]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[83]  K. Omasa Diagnosis of Stomatal Response and Gas Exchange of Trees by Thermal Remote Sensing , 2002 .

[84]  K. Omasa,et al.  Image Instrumentation of Chlorophyll a Fluorescence for Diagnosing Photosynthetic Injury , 2002 .

[85]  W. Cohen,et al.  Characterizing 23 Years (1972–95) of Stand Replacement Disturbance in Western Oregon Forests with Landsat Imagery , 2002, Ecosystems.

[86]  Peng Gong,et al.  Improvement of an Oak Canopy Model Extracted from Digital Photogrammetry , 2002 .

[87]  Moon S. Kim,et al.  Assessment of Environmental Plant Stresses Using Multispectral Steady-State Fluorescence Imagery , 2002 .

[88]  G. A. Blackburn,et al.  Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery , 2002 .

[89]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[90]  K. Omasa,et al.  Mapping of tree position of Larix leptolepis woods and estimation of diameter at breast height (DBH) and biomass of the trees using range data measured by a portable scanning lidar , 2002 .

[91]  M. Kacira,et al.  Machine vision extracted plant movement for early detection of plant water stress. , 2002, Transactions of the ASAE. American Society of Agricultural Engineers.

[92]  C. Osmond,et al.  Field portable imaging system for measurement of chlorophyll fluorescence quenching , 2002 .

[93]  K. Omasa,et al.  Air Pollution and Plant Biotechnology , 2002, Springer Japan.

[94]  Åsa Persson,et al.  Detecting and measuring individual trees using an airborne laser scanner , 2002 .

[95]  Susan L. Ustin,et al.  Using satellite remote sensing for DEM extraction in complex mountainous terrain: Landscape analysis of the Makalu Barun National Park of eastern Nepal , 2002 .

[96]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[97]  K. Lim,et al.  Lidar remote sensing of biophysical properties of tolerant northern hardwood forests , 2003 .

[98]  T. Kozai,et al.  A Binocular Stereovision System for Transplant Growth Variables Analysis , 2003 .

[99]  Tomas Brandtberg Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America , 2003 .

[100]  Christian Hermans,et al.  Robotized time-lapse imaging to assess in-planta uptake of phenylurea herbicides and their microbial degradation , 2003 .

[101]  N. Coops,et al.  Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests , 2003 .

[102]  K. Omasa,et al.  Simultaneous measurement of stomatal conductance, non-photochemical quenching, and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging. , 2003, Plant & cell physiology.

[103]  G. Qiu,et al.  Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees. , 2003, Environmental science & technology.

[104]  Juha Hyyppä,et al.  The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve , 2004 .

[105]  K. Oxborough,et al.  Using Chlorophyll a Fluorescence Imaging to Monitor Photosynthetic Performance , 2004 .

[106]  Pablo J. Zarco-Tejada,et al.  Stress Detection in Crops with Hyperspectral Remote Sensing and Physical Simulation Models , 2004 .

[107]  H. Lichtenthaler,et al.  Imaging of the Blue, Green, and Red Fluorescence Emission of Plants: An Overview , 2000, Photosynthetica.

[108]  J. Hyyppä,et al.  Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions , 2004 .

[109]  T. Dawson,et al.  Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .

[110]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[111]  Thierry Toutin,et al.  Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-a, IKONOS-II, and QuickBird , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[112]  Andrew D. Friend,et al.  Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink , 2004 .

[113]  Ismael Moya,et al.  A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence , 2004 .

[114]  Åsa Persson,et al.  Identifying species of individual trees using airborne laser scanner , 2004 .

[115]  J. Warham,et al.  The vegetation of The Snares, islands south of New Zealand, mapped and discussed , 2004 .

[116]  P. Foucher,et al.  Morphological Image Analysis for the Detection of Water Stress in Potted Forsythia , 2004 .

[117]  H. Jones Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology , 2004 .

[118]  Ranga B. Myneni,et al.  Lidar remote sensing for modeling gross primary production of deciduous forests , 2004 .

[119]  L. N. Govindjee Seeing Is Believing , 2000, Photosynthetica.

[120]  Govindjee,et al.  Chlorophyll a Fluorescence , 2004, Advances in Photosynthesis and Respiration.

[121]  J. Hyyppä,et al.  Automatic detection of harvested trees and determination of forest growth using airborne laser scanning , 2004 .

[122]  Govindjee,et al.  Chlorophyll a Fluorescence: A Bit of Basics and History , 2004 .

[123]  Takafumi Tanaka,et al.  Measurement of forest canopy structure by a laser plane range-finding method: Improvement of radiative resolution and examples of its application , 2004 .

[124]  S. Popescu,et al.  Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height , 2004 .

[125]  David J. Harding,et al.  A portable LIDAR system for rapid determination of forest canopy structure , 2004 .

[126]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[127]  C. Hopkinson,et al.  Assessing forest metrics with a ground-based scanning lidar , 2004 .

[128]  D. Straeten,et al.  Tuning the pores: towards engineering plants for improved water use efficiency. , 2005, Trends in biotechnology.

[129]  B. Law Carbon dynamics in response to climate and disturbance: recent progress from multi-scale measurements and modeling in AmeriFlux. , 2005 .

[130]  Michael A. Lefsky,et al.  Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity , 2005 .

[131]  Hans Jørgen Andersen,et al.  Geometric plant properties by relaxed stereo vision using simulated annealing , 2005 .

[132]  K. Omasa,et al.  Plant responses to air pollution and global change , 2005 .

[133]  C. Andalo,et al.  The impact of climate change on growth of local white spruce populations in Québec, Canada , 2005 .

[134]  Uwe Rascher,et al.  Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation , 2005, Photosynthesis Research.

[135]  K. Omasa,et al.  Assessments of climate change impacts on the terrestrial ecosystem in Japan using the Bio- Geographical and GeoChemical (BGGC) Model , 2005 .

[136]  K. Omasa,et al.  3-D measurement of trees using a portable scanning lidar , 2005 .

[137]  Uwe Rascher,et al.  Remote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excess light in Populus deltoides stands under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser‐induced fluorescence transient device , 2005 .

[138]  Robert J. Gurney,et al.  Measurement of canopy geometry characteristics using LiDAR laser altimetry: a feasibility study , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[139]  K. Itten,et al.  Accuracy assessment of automatically derived digital elevation models from aster data in mountainous terrain , 2005 .

[140]  S. Reutebuch,et al.  Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. , 2005 .

[141]  Terje Gobakken,et al.  Estimating forest growth using canopy metrics derived from airborne laser scanner data , 2005 .

[142]  Anthony W. D. Larkum,et al.  Chlorophyll a Fluorescence A Signature of Photosynthesis. , 2006 .

[143]  U. Rascher,et al.  Functional dynamics of plant growth and photosynthesis--from steady-state to dynamics--from homogeneity to heterogeneity. , 2006, Plant, cell & environment.

[144]  J. Hyyppä,et al.  DETECTING AND ESTIMATING ATTRIBUTES FOR SINGLE TREES USING LASER SCANNER , 2006 .

[145]  5.2 Remote Sensing from Satellites and Aircraft , 2006 .

[146]  Kenji Omasa,et al.  Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[147]  Rasmus Fensholt,et al.  Remote Sensing , 2008, Encyclopedia of GIS.