Dependence of dissipation on the initial distribution over states

We analyze how the amount of work dissipated by a fixed nonequilibrium process depends on the initial distribution over states. Specifically, we compare the amount of dissipation when the process is used with some specified initial distribution to the minimal amount of dissipation possible for any initial distribution. We show that the difference between those two amounts of dissipation is given by a simple information-theoretic function that depends only on the initial and final state distributions. Crucially, this difference is independent of the details of the process relating those distributions. We then consider how dissipation depends on the initial distribution for a 'computer', i.e., a nonequilibrium process whose dynamics over coarse-grained macrostates implement some desired input-output map. We show that our results still apply when stated in terms of distributions over the computer's coarse-grained macrostates. This can be viewed as a novel thermodynamic cost of computation, reflecting changes in the distribution over inputs rather than the logical dynamics of the computation.

[1]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[2]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[3]  Physics Letters , 1962, Nature.

[4]  L. Goddard Information Theory , 1962, Nature.

[5]  Pairs of nonsingular matrices , 1966 .

[6]  P. Gács,et al.  Spreading of Sets in Product Spaces and Hypercontraction of the Markov Operator , 1976 .

[7]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[8]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[9]  Zurek,et al.  Algorithmic randomness and physical entropy. , 1989, Physical review. A, General physics.

[10]  Physical Review Letters 63 , 1989 .

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[13]  Gary J. Nutt,et al.  Open Systems , 2019 .

[14]  Joel E. Cohen,et al.  Relative entropy under mappings by stochastic matrices , 1993 .

[15]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[16]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[17]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[18]  Jarzynski equality for the transitions between nonequilibrium steady states. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Yemima Ben-menahem Studies in History and Philosophy of Modern Physics , 2001 .

[21]  Seth Lloyd,et al.  Information-theoretic approach to the study of control systems , 2001, physics/0104007.

[22]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[23]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[24]  Udo Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[25]  C. Jarzynski,et al.  Path-integral analysis of fluctuation theorems for general Langevin processes , 2006, cond-mat/0605471.

[26]  C. Jarzynski Rare events and the convergence of exponentially averaged work values. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  New Journal of Physics The , 2007 .

[28]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[29]  U. Seifert,et al.  Optimal finite-time processes in stochastic thermodynamics. , 2007, Physical review letters.

[30]  J. Parrondo,et al.  The “footprints” of irreversibility , 2008, 0805.4703.

[31]  J. Parrondo,et al.  Entropy production and the arrow of time , 2009, 0904.1573.

[32]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[33]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Masahito Ueda,et al.  Minimal energy cost for thermodynamic information processing: measurement and information erasure. , 2008, Physical review letters.

[35]  Dean J. Driebe,et al.  Generalization of the second law for a transition between nonequilibrium states , 2010 .

[36]  Eric Lutz,et al.  Comment on "Minimal energy cost for thermodynamic information processing: measurement and information erasure". , 2010, Physical review letters.

[37]  H. Hasegawa,et al.  Generalization of the Second Law for a Nonequilibrium Initial State , 2009, 0907.1569.

[38]  M. Esposito,et al.  Three faces of the second law. I. Master equation formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[40]  E. Lutz,et al.  Nonequilibrium entropy production for open quantum systems. , 2011, Physical review letters.

[41]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[42]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[43]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[44]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[45]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[46]  Erik Aurell,et al.  Refined Second Law of Thermodynamics for Fast Random Processes , 2012, Journal of Statistical Physics.

[47]  E. Lutz,et al.  Information free energy for nonequilibrium states , 2012, 1201.3888.

[48]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[49]  David A. Sivak,et al.  Thermodynamic metrics and optimal paths. , 2012, Physical review letters.

[50]  Mikhail Prokopenko,et al.  On Thermodynamic Interpretation of Transfer Entropy , 2013, Entropy.

[51]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[52]  Farid Chejne,et al.  A simple derivation of crooks relation , 2013 .

[53]  Dmitri Petrov,et al.  Universal features in the energetics of symmetry breaking , 2013, Nature Physics.

[54]  Mikhail Prokopenko,et al.  Transfer Entropy and Transient Limits of Computation , 2014, Scientific Reports.

[55]  Thermodynamics: Engines and demons , 2014 .

[56]  T. Sagawa Thermodynamic and logical reversibilities revisited , 2013, 1311.1886.

[57]  David H. Wolpert,et al.  Minimal work required for arbitrary computation , 2015 .

[58]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[59]  David H. Wolpert,et al.  Extending Landauer's Bound from Bit Erasure to Arbitrary Computation , 2015, 1508.05319.

[60]  K. Funo,et al.  Work fluctuation and total entropy production in nonequilibrium processes. , 2016, Physical review. E.

[61]  Blake S. Pollard A Second Law for Open Markov Processes , 2016, Open Syst. Inf. Dyn..

[62]  David H. Wolpert,et al.  The Free Energy Requirements of Biological Organisms; Implications for Evolution , 2016, Entropy.

[63]  October I Physical Review Letters , 2022 .