Fast convolution quadrature for the wave equation in three dimensions

[1]  Francisco-Javier Sayas,et al.  Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map , 2016 .

[2]  Lehel Banjai,et al.  Time-domain Dirichlet-to-Neumann map and its discretization , 2014 .

[3]  L. Banjai,et al.  Sparsity of Runge–Kutta convolution weights for the three-dimensional wave equation , 2014 .

[4]  Stefan A. Sauter,et al.  Retarded boundary integral equations on the sphere: exact and numerical solution , 2014 .

[5]  M. Kachanovska Hierarchical matrices and the High-Frequency Fast Multipole Method for the Helmholtz Equation with Decay , 2014 .

[6]  Lehel Banjai,et al.  Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge–Kutta convolution quadrature , 2013, Numerische Mathematik.

[7]  A. Frangi,et al.  Neumann exterior wave propagation problems: computational aspects of 3D energetic Galerkin BEM , 2013 .

[8]  Francisco-Javier Sayas,et al.  Fully discrete Kirchhoff formulas with CQ-BEM , 2013, 1301.0267.

[9]  Jonas Ballani,et al.  Tensor structured evaluation of singular volume integrals , 2012, Comput. Vis. Sci..

[10]  Jonas Ballani,et al.  Fast evaluation of singular BEM integrals based on tensor approximations , 2012, Numerische Mathematik.

[11]  Jonas Ballani,et al.  Fast Evaluation of Near-Field Boundary Integralsusing Tensor Approximations , 2012 .

[12]  Peter Monk,et al.  Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation , 2012 .

[13]  Jens Markus Melenk,et al.  Runge–Kutta convolution quadrature for operators arising in wave propagation , 2011, Numerische Mathematik.

[14]  D. Weile,et al.  Implicit Runge-Kutta Methods for the Discretization of Time Domain Integral Equations , 2011, IEEE Transactions on Antennas and Propagation.

[15]  Dj Chappell,et al.  Convolution quadrature Galerkin boundary element method for the wave equation with reduced quadrature weight computation , 2011 .

[16]  Mingyu Lu,et al.  Stable Electric Field TDIE Solvers via Quasi-Exact Evaluation of MOT Matrix Elements , 2011, IEEE Transactions on Antennas and Propagation.

[17]  Lehel Banjai,et al.  An error analysis of Runge–Kutta convolution quadrature , 2011 .

[18]  S. Börm Efficient Numerical Methods for Non-local Operators , 2010 .

[19]  Jun Meng,et al.  A multilevel Cartesian non-uniform grid time domain algorithm , 2010, J. Comput. Phys..

[20]  Lehel Banjai,et al.  Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..

[21]  I. Graham,et al.  Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation , 2010, 1007.3074.

[22]  S. Hirose,et al.  Parallelized fast multipole BEM based on the convolution quadrature method for 3-D wave propagation problems in time-domain , 2010 .

[23]  Mario Bebendorf,et al.  Comparison of the Fast Multipole Method with Hierarchical Matrices for the Helmholtz-BEM , 2010 .

[24]  M. Diligenti,et al.  An energy approach to space–time Galerkin BEM for wave propagation problems , 2009 .

[25]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[26]  Dj Chappell,et al.  A convolution quadrature Galerkin boundary element method for the exterior Neumann problem of the wave equation , 2009 .

[27]  Martin Schanz,et al.  Convolution quadrature method‐based symmetric Galerkin boundary element method for 3‐d elastodynamics , 2008 .

[28]  Lehel Banjai,et al.  Rapid Solution of the Wave Equation in Unbounded Domains , 2008, SIAM J. Numer. Anal..

[29]  P. Monk,et al.  A Finite Difference Delay Modeling Approach to the Discretization of the Time Domain Integral Equations of Electromagnetics , 2008, IEEE Transactions on Antennas and Propagation.

[30]  Wolfgang Hackbusch,et al.  Sparse convolution quadrature for time domain boundary integral formulations of the wave equation , 2008 .

[31]  Lexing Ying,et al.  Fast Directional Multilevel Algorithms for Oscillatory Kernels , 2007, SIAM J. Sci. Comput..

[32]  Lehel Banjai,et al.  Hierarchical matrix techniques for low- and high-frequency Helmholtz problems , 2007 .

[33]  Stefan A. Sauter,et al.  Numerical Treatment of Retarded Boundary Integral Equations by Sparse Panel Clustering (extended version) , 2006 .

[34]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[35]  Amir Boag,et al.  Nonuniform grid time domain (NGTD) algorithm for fast evaluation of transient wave fields , 2006 .

[36]  Lars Grasedyck,et al.  Adaptive Recompression of -Matrices for BEM , 2005, Computing.

[37]  Martin Costabel,et al.  Time‐Dependent Problems with the Boundary Integral Equation Method , 2004 .

[38]  E. Michielssen,et al.  Time domain adaptive integral method for surface integral equations , 2004, IEEE Transactions on Antennas and Propagation.

[39]  Steffen Börm,et al.  Low-Rank Approximation of Integral Operators by Interpolation , 2004, Computing.

[40]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..

[41]  T. Ha-Duong,et al.  A Galerkin BEM for transient acoustic scattering by an absorbing obstacle , 2003 .

[42]  W. Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[43]  S. Amini,et al.  Multi-level fast multipole solution of the scattering problem , 2003 .

[44]  E. Michielssen,et al.  A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[45]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[46]  Kenichi Yoshida,et al.  Applications of Fast Multipole Method to Boundary Integral Equation Method , 2001 .

[47]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[48]  Eric Darve,et al.  The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..

[49]  Eric F Darve Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .

[50]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[51]  M. Schanz A boundary element formulation in time domain for viscoelastic solids , 1999 .

[52]  E. Michielssen,et al.  The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .

[53]  E. Michielssen,et al.  Fast Evaluation of Three-Dimensional Transient Wave Fields Using Diagonal Translation Operators , 1998 .

[54]  Stefan A. Sauter,et al.  Efficient automatic quadrature in 3-d Galerkin BEM , 1998 .

[55]  Heinz Antes,et al.  A new visco- and elastodynamic time domain Boundary Element formulation , 1997 .

[56]  Stefan A. Sauter,et al.  On the effect of numerical integration in the Galerkin boundary element method , 1996 .

[57]  Michael A. Epton,et al.  Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations , 1995, SIAM J. Sci. Comput..

[58]  Wolfgang Hackbusch,et al.  On numerical cubatures of nearly singular surface integrals arising in BEM collocation , 1994, Computing.

[59]  C. Lubich,et al.  On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .

[60]  V. Rokhlin Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .

[61]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[62]  A. C. Woo,et al.  Benchmark radar targets for the validation of computational electromagnetics programs , 1993 .

[63]  M. J. Schuh,et al.  EM programmer's notebook-benchmark plate radar targets for the validation of computational electroma , 1992 .

[64]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[65]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .

[66]  P. Henrici Fast Fourier Methods in Computational Complex Analysis , 1979 .

[67]  T. Cruse,et al.  A direct formulation and numerical solution of the general transient elastodynamic problem. II , 1968 .

[68]  Stefan A. Sauter,et al.  A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions , 2013, Numerische Mathematik.

[69]  M. Schanz,et al.  Wave Propagation Problems treated with Convolution Quadrature and BEM , 2012 .

[70]  Giovanni Monegato,et al.  A space–time BIE method for nonhomogeneous exterior wave equation problems. The Dirichlet case , 2012 .

[71]  G. Brenn,et al.  Matthias Messner: Fast Boundary Element Methods in Acoustics , 2012 .

[72]  Boris N. Khoromskij,et al.  Fast Quadrature Techniques for Retarded Potentials Based on TT/QTT Tensor Approximation , 2011, Comput. Methods Appl. Math..

[73]  Peter Meszmer,et al.  Hierarchical Quadrature for Multidimensional Singular Integrals , 2010 .

[74]  Olaf Steinbach,et al.  A fast BE‐FE coupling scheme for partly immersed bodies , 2010 .

[75]  Wolfgang Hackbusch,et al.  Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation by Cutoff and Panel-Clustering , 2007 .

[76]  L. Grasedyck,et al.  für Mathematik in den Naturwissenschaften Leipzig , 2005 .

[77]  J. Breuer Schnelle Randelementmethoden zur Simulation von elektrischen Wirbelstromfeldern sowie ihrer Wärmeproduktion und Kühlung , 2005 .

[78]  Matthias Fischer,et al.  The Fast Multipole Boundary Element Method and its Application to Structure-Acoustic Field Interaction , 2004 .

[79]  T. Ha-Duong,et al.  On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .

[80]  Mark Ainsworth,et al.  Topics in Computational Wave Propagation , 2003 .

[81]  W. Hackbusch,et al.  Digital Object Identifier (DOI) 10.1007/s00607-002-1450-4 Data-sparse Approximation by Adaptive H 2-Matrices , 2002 .

[82]  Eric F Darve The Fast Multipole Method , 2000 .

[83]  Stefan A. Sauter,et al.  CUBATURE TECHNIQUES FOR 3-D GALERKIN BEM , 1996 .

[84]  Gabriel Wittum,et al.  Boundary Elements: Implementation and Analysis of Advanced Algorithms , 1996 .

[85]  Alexander Ostermann,et al.  RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE , 1993 .

[86]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[87]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .

[88]  A. Bamberger et T. Ha Duong,et al.  Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide , 1986 .