Fast convolution quadrature for the wave equation in three dimensions
暂无分享,去创建一个
[1] Francisco-Javier Sayas,et al. Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map , 2016 .
[2] Lehel Banjai,et al. Time-domain Dirichlet-to-Neumann map and its discretization , 2014 .
[3] L. Banjai,et al. Sparsity of Runge–Kutta convolution weights for the three-dimensional wave equation , 2014 .
[4] Stefan A. Sauter,et al. Retarded boundary integral equations on the sphere: exact and numerical solution , 2014 .
[5] M. Kachanovska. Hierarchical matrices and the High-Frequency Fast Multipole Method for the Helmholtz Equation with Decay , 2014 .
[6] Lehel Banjai,et al. Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge–Kutta convolution quadrature , 2013, Numerische Mathematik.
[7] A. Frangi,et al. Neumann exterior wave propagation problems: computational aspects of 3D energetic Galerkin BEM , 2013 .
[8] Francisco-Javier Sayas,et al. Fully discrete Kirchhoff formulas with CQ-BEM , 2013, 1301.0267.
[9] Jonas Ballani,et al. Tensor structured evaluation of singular volume integrals , 2012, Comput. Vis. Sci..
[10] Jonas Ballani,et al. Fast evaluation of singular BEM integrals based on tensor approximations , 2012, Numerische Mathematik.
[11] Jonas Ballani,et al. Fast Evaluation of Near-Field Boundary Integralsusing Tensor Approximations , 2012 .
[12] Peter Monk,et al. Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation , 2012 .
[13] Jens Markus Melenk,et al. Runge–Kutta convolution quadrature for operators arising in wave propagation , 2011, Numerische Mathematik.
[14] D. Weile,et al. Implicit Runge-Kutta Methods for the Discretization of Time Domain Integral Equations , 2011, IEEE Transactions on Antennas and Propagation.
[15] Dj Chappell,et al. Convolution quadrature Galerkin boundary element method for the wave equation with reduced quadrature weight computation , 2011 .
[16] Mingyu Lu,et al. Stable Electric Field TDIE Solvers via Quasi-Exact Evaluation of MOT Matrix Elements , 2011, IEEE Transactions on Antennas and Propagation.
[17] Lehel Banjai,et al. An error analysis of Runge–Kutta convolution quadrature , 2011 .
[18] S. Börm. Efficient Numerical Methods for Non-local Operators , 2010 .
[19] Jun Meng,et al. A multilevel Cartesian non-uniform grid time domain algorithm , 2010, J. Comput. Phys..
[20] Lehel Banjai,et al. Multistep and Multistage Convolution Quadrature for the Wave Equation: Algorithms and Experiments , 2010, SIAM J. Sci. Comput..
[21] I. Graham,et al. Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation , 2010, 1007.3074.
[22] S. Hirose,et al. Parallelized fast multipole BEM based on the convolution quadrature method for 3-D wave propagation problems in time-domain , 2010 .
[23] Mario Bebendorf,et al. Comparison of the Fast Multipole Method with Hierarchical Matrices for the Helmholtz-BEM , 2010 .
[24] M. Diligenti,et al. An energy approach to space–time Galerkin BEM for wave propagation problems , 2009 .
[25] J. Remacle,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[26] Dj Chappell,et al. A convolution quadrature Galerkin boundary element method for the exterior Neumann problem of the wave equation , 2009 .
[27] Martin Schanz,et al. Convolution quadrature method‐based symmetric Galerkin boundary element method for 3‐d elastodynamics , 2008 .
[28] Lehel Banjai,et al. Rapid Solution of the Wave Equation in Unbounded Domains , 2008, SIAM J. Numer. Anal..
[29] P. Monk,et al. A Finite Difference Delay Modeling Approach to the Discretization of the Time Domain Integral Equations of Electromagnetics , 2008, IEEE Transactions on Antennas and Propagation.
[30] Wolfgang Hackbusch,et al. Sparse convolution quadrature for time domain boundary integral formulations of the wave equation , 2008 .
[31] Lexing Ying,et al. Fast Directional Multilevel Algorithms for Oscillatory Kernels , 2007, SIAM J. Sci. Comput..
[32] Lehel Banjai,et al. Hierarchical matrix techniques for low- and high-frequency Helmholtz problems , 2007 .
[33] Stefan A. Sauter,et al. Numerical Treatment of Retarded Boundary Integral Equations by Sparse Panel Clustering (extended version) , 2006 .
[34] Zydrunas Gimbutas,et al. A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..
[35] Amir Boag,et al. Nonuniform grid time domain (NGTD) algorithm for fast evaluation of transient wave fields , 2006 .
[36] Lars Grasedyck,et al. Adaptive Recompression of -Matrices for BEM , 2005, Computing.
[37] Martin Costabel,et al. Time‐Dependent Problems with the Boundary Integral Equation Method , 2004 .
[38] E. Michielssen,et al. Time domain adaptive integral method for surface integral equations , 2004, IEEE Transactions on Antennas and Propagation.
[39] Steffen Börm,et al. Low-Rank Approximation of Integral Operators by Interpolation , 2004, Computing.
[40] Dugald B. Duncan,et al. Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..
[41] T. Ha-Duong,et al. A Galerkin BEM for transient acoustic scattering by an absorbing obstacle , 2003 .
[42] W. Hackbusch,et al. Construction and Arithmetics of H-Matrices , 2003, Computing.
[43] S. Amini,et al. Multi-level fast multipole solution of the scattering problem , 2003 .
[44] E. Michielssen,et al. A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).
[45] Jian-Ming Jin,et al. Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .
[46] Kenichi Yoshida,et al. Applications of Fast Multipole Method to Boundary Integral Equation Method , 2001 .
[47] Mario Bebendorf,et al. Approximation of boundary element matrices , 2000, Numerische Mathematik.
[48] Eric Darve,et al. The Fast Multipole Method I: Error Analysis and Asymptotic Complexity , 2000, SIAM J. Numer. Anal..
[49] Eric F Darve. Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .
[50] Eric Darve,et al. The Fast Multipole Method , 2000 .
[51] M. Schanz. A boundary element formulation in time domain for viscoelastic solids , 1999 .
[52] E. Michielssen,et al. The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .
[53] E. Michielssen,et al. Fast Evaluation of Three-Dimensional Transient Wave Fields Using Diagonal Translation Operators , 1998 .
[54] Stefan A. Sauter,et al. Efficient automatic quadrature in 3-d Galerkin BEM , 1998 .
[55] Heinz Antes,et al. A new visco- and elastodynamic time domain Boundary Element formulation , 1997 .
[56] Stefan A. Sauter,et al. On the effect of numerical integration in the Galerkin boundary element method , 1996 .
[57] Michael A. Epton,et al. Multipole Translation Theory for the Three-Dimensional Laplace and Helmholtz Equations , 1995, SIAM J. Sci. Comput..
[58] Wolfgang Hackbusch,et al. On numerical cubatures of nearly singular surface integrals arising in BEM collocation , 1994, Computing.
[59] C. Lubich,et al. On the multistep time discretization of linear\newline initial-boundary value problems and their boundary integral equations , 1994 .
[60] V. Rokhlin. Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .
[61] R. Coifman,et al. The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.
[62] A. C. Woo,et al. Benchmark radar targets for the validation of computational electromagnetics programs , 1993 .
[63] M. J. Schuh,et al. EM programmer's notebook-benchmark plate radar targets for the validation of computational electroma , 1992 .
[64] C. Lubich. Convolution quadrature and discretized operational calculus. II , 1988 .
[65] Ernst Hairer,et al. FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .
[66] P. Henrici. Fast Fourier Methods in Computational Complex Analysis , 1979 .
[67] T. Cruse,et al. A direct formulation and numerical solution of the general transient elastodynamic problem. II , 1968 .
[68] Stefan A. Sauter,et al. A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions , 2013, Numerische Mathematik.
[69] M. Schanz,et al. Wave Propagation Problems treated with Convolution Quadrature and BEM , 2012 .
[70] Giovanni Monegato,et al. A space–time BIE method for nonhomogeneous exterior wave equation problems. The Dirichlet case , 2012 .
[71] G. Brenn,et al. Matthias Messner: Fast Boundary Element Methods in Acoustics , 2012 .
[72] Boris N. Khoromskij,et al. Fast Quadrature Techniques for Retarded Potentials Based on TT/QTT Tensor Approximation , 2011, Comput. Methods Appl. Math..
[73] Peter Meszmer,et al. Hierarchical Quadrature for Multidimensional Singular Integrals , 2010 .
[74] Olaf Steinbach,et al. A fast BE‐FE coupling scheme for partly immersed bodies , 2010 .
[75] Wolfgang Hackbusch,et al. Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation by Cutoff and Panel-Clustering , 2007 .
[76] L. Grasedyck,et al. für Mathematik in den Naturwissenschaften Leipzig , 2005 .
[77] J. Breuer. Schnelle Randelementmethoden zur Simulation von elektrischen Wirbelstromfeldern sowie ihrer Wärmeproduktion und Kühlung , 2005 .
[78] Matthias Fischer,et al. The Fast Multipole Boundary Element Method and its Application to Structure-Acoustic Field Interaction , 2004 .
[79] T. Ha-Duong,et al. On Retarded Potential Boundary Integral Equations and their Discretisation , 2003 .
[80] Mark Ainsworth,et al. Topics in Computational Wave Propagation , 2003 .
[81] W. Hackbusch,et al. Digital Object Identifier (DOI) 10.1007/s00607-002-1450-4 Data-sparse Approximation by Adaptive H 2-Matrices , 2002 .
[82] Eric F Darve. The Fast Multipole Method , 2000 .
[83] Stefan A. Sauter,et al. CUBATURE TECHNIQUES FOR 3-D GALERKIN BEM , 1996 .
[84] Gabriel Wittum,et al. Boundary Elements: Implementation and Analysis of Advanced Algorithms , 1996 .
[85] Alexander Ostermann,et al. RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE , 1993 .
[86] C. Lubich. Convolution quadrature and discretized operational calculus. I , 1988 .
[87] A. Bamberger et T. Ha Duong,et al. Formulation variationnelle espace‐temps pour le calcul par potentiel retardé de la diffraction d'une onde acoustique (I) , 1986 .
[88] A. Bamberger et T. Ha Duong,et al. Formulation variationnelle pour le calcul de la diffraction d'une onde acoustique par une surface rigide , 1986 .