Gaussian Processes for Prediction
暂无分享,去创建一个
[1] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[2] Hugh Durrant-Whyte,et al. Introduction to Decentralised Data Fusion , 2006 .
[3] Kevin H. Knuth,et al. Lattice duality: The origin of probability and entropy , 2013, Neurocomputing.
[4] David J. Fleet,et al. Gaussian Process Dynamical Models , 2005, NIPS.
[5] P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .
[6] D. Biro,et al. Homing pigeons develop local route stereotypy , 2005, Proceedings of the Royal Society B: Biological Sciences.
[7] Yee Whye Teh,et al. Semiparametric latent factor models , 2005, AISTATS.
[8] Marcus R. Frean,et al. Dependent Gaussian Processes , 2004, NIPS.
[9] Stephen Roberts,et al. Positional entropy during pigeon homing I: application of Bayesian latent state modelling. , 2004, Journal of theoretical biology.
[10] R. Preuss,et al. Maximum entropy and Bayesian data analysis: Entropic prior distributions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[12] R. Preuss,et al. Entropic Priors , 2003, physics/0312131.
[13] A. P. Dawid,et al. Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .
[14] M. Tribus,et al. Probability theory: the logic of science , 2003 .
[15] T. Gneiting. Compactly Supported Correlation Functions , 2002 .
[16] C. C. Rodriguez. Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models , 2002, physics/0201016.
[17] C. Rasmussen,et al. Gaussian Process Priors with Uncertain Inputs - Application to Multiple-Step Ahead Time Series Forecasting , 2002, NIPS.
[18] Carl E. Rasmussen,et al. Bayesian Monte Carlo , 2002, NIPS.
[19] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[20] Michael L. Stein,et al. Interpolation of spatial data , 1999 .
[21] G. L. Bretthorst. The Near-Irrelevance of Sampling Frequency Distributions , 1999 .
[22] Richard S. Sutton,et al. Introduction to Reinforcement Learning , 1998 .
[23] D. Mackay,et al. Introduction to Gaussian processes , 1998 .
[24] Radford M. Neal. Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.
[25] Douglas M. Bates,et al. Unconstrained parametrizations for variance-covariance matrices , 1996, Stat. Comput..
[26] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[27] B. D. Finetti,et al. Foresight: Its Logical Laws, Its Subjective Sources , 1992 .
[28] A. O'Hagan,et al. Bayes–Hermite quadrature , 1991 .
[29] D. Dennett. Consciousness Explained. Boston (Little, Brown and Co) 1991. , 1991 .
[30] R. T. Cox. Probability, frequency and reasonable expectation , 1990 .
[31] James Llinas,et al. Multisensor Data Fusion , 1990 .
[32] D. Dennett. The Intentional Stance. , 1987 .
[33] Anthony O'Hagan,et al. Monte Carlo is fundamentally unsound , 1987 .
[34] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[35] N. Sahlin,et al. The role of second-order probabilities in decision making , 1983 .
[36] J. W. Humberston. Classical mechanics , 1980, Nature.
[37] David Heath,et al. De Finetti's Theorem on Exchangeable Variables , 1976 .
[38] David G. Stork,et al. Pattern Classification , 1973 .
[39] C. Lanczos. The variational principles of mechanics , 1949 .
[40] B. D. Finetti. La prévision : ses lois logiques, ses sources subjectives , 1937 .
[41] H. Jeffreys. The Theory of Probability , 1896 .