Gaussian Processes for Prediction

[1]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[2]  Hugh Durrant-Whyte,et al.  Introduction to Decentralised Data Fusion , 2006 .

[3]  Kevin H. Knuth,et al.  Lattice duality: The origin of probability and entropy , 2013, Neurocomputing.

[4]  David J. Fleet,et al.  Gaussian Process Dynamical Models , 2005, NIPS.

[5]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[6]  D. Biro,et al.  Homing pigeons develop local route stereotypy , 2005, Proceedings of the Royal Society B: Biological Sciences.

[7]  Yee Whye Teh,et al.  Semiparametric latent factor models , 2005, AISTATS.

[8]  Marcus R. Frean,et al.  Dependent Gaussian Processes , 2004, NIPS.

[9]  Stephen Roberts,et al.  Positional entropy during pigeon homing I: application of Bayesian latent state modelling. , 2004, Journal of theoretical biology.

[10]  R. Preuss,et al.  Maximum entropy and Bayesian data analysis: Entropic prior distributions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[12]  R. Preuss,et al.  Entropic Priors , 2003, physics/0312131.

[13]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[14]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[15]  T. Gneiting Compactly Supported Correlation Functions , 2002 .

[16]  C. C. Rodriguez Entropic priors for discrete probabilistic networks and for mixtures of Gaussians models , 2002, physics/0201016.

[17]  C. Rasmussen,et al.  Gaussian Process Priors with Uncertain Inputs - Application to Multiple-Step Ahead Time Series Forecasting , 2002, NIPS.

[18]  Carl E. Rasmussen,et al.  Bayesian Monte Carlo , 2002, NIPS.

[19]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[20]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[21]  G. L. Bretthorst The Near-Irrelevance of Sampling Frequency Distributions , 1999 .

[22]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[23]  D. Mackay,et al.  Introduction to Gaussian processes , 1998 .

[24]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[25]  Douglas M. Bates,et al.  Unconstrained parametrizations for variance-covariance matrices , 1996, Stat. Comput..

[26]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[27]  B. D. Finetti,et al.  Foresight: Its Logical Laws, Its Subjective Sources , 1992 .

[28]  A. O'Hagan,et al.  Bayes–Hermite quadrature , 1991 .

[29]  D. Dennett Consciousness Explained. Boston (Little, Brown and Co) 1991. , 1991 .

[30]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[31]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[32]  D. Dennett The Intentional Stance. , 1987 .

[33]  Anthony O'Hagan,et al.  Monte Carlo is fundamentally unsound , 1987 .

[34]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[35]  N. Sahlin,et al.  The role of second-order probabilities in decision making , 1983 .

[36]  J. W. Humberston Classical mechanics , 1980, Nature.

[37]  David Heath,et al.  De Finetti's Theorem on Exchangeable Variables , 1976 .

[38]  David G. Stork,et al.  Pattern Classification , 1973 .

[39]  C. Lanczos The variational principles of mechanics , 1949 .

[40]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[41]  H. Jeffreys The Theory of Probability , 1896 .