Machine Learning in Agriculture: A Review

Machine learning has emerged with big data technologies and high-performance computing to create new opportunities for data intensive science in the multi-disciplinary agri-technologies domain. In this paper, we present a comprehensive review of research dedicated to applications of machine learning in agricultural production systems. The works analyzed were categorized in (a) crop management, including applications on yield prediction, disease detection, weed detection crop quality, and species recognition; (b) livestock management, including applications on animal welfare and livestock production; (c) water management; and (d) soil management. The filtering and classification of the presented articles demonstrate how agriculture will benefit from machine learning technologies. By applying machine learning to sensor data, farm management systems are evolving into real time artificial intelligence enabled programs that provide rich recommendations and insights for farmer decision support and action.

[1]  Roberto Oberti,et al.  Detection of biotic and abiotic stresses in crops by using hierarchical self organizing classifiers , 2017, Precision Agriculture.

[2]  H. Asadi,et al.  Machine Learning for Outcome Prediction of Acute Ischemic Stroke Post Intra-Arterial Therapy , 2014, PloS one.

[3]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[4]  Alexander J. Smola,et al.  Regression estimation with support vector learning machines , 1996 .

[5]  Mustafa Turkmen,et al.  ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM MODELS FOR COMPUTING THE CHARACTERISTIC IMPEDANCES OF AIR-SUSPENDED TRAPEZOIDAL AND RECTANGULAR-SHAPED MICROSHIELD LINES , 2010 .

[6]  Mike Tyers,et al.  Prediction of Synergism from Chemical-Genetic Interactions by Machine Learning. , 2015, Cell systems.

[7]  Rommel M. Barbosa,et al.  Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry , 2016, Comput. Electron. Agric..

[8]  S. Linnainmaa Taylor expansion of the accumulated rounding error , 1976 .

[9]  Ilias Kyriazakis,et al.  Automated tracking to measure behavioural changes in pigs for health and welfare monitoring , 2017, Scientific Reports.

[10]  Robert C. Tryon,et al.  Communality of a variable: Formulation by cluster analysis , 1957 .

[11]  Camila Maione,et al.  Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: A review , 2019, Critical reviews in food science and nutrition.

[12]  J. Im,et al.  Meteorological drought forecasting for ungauged areas based on machine learning: Using long-range climate forecast and remote sensing data , 2017 .

[13]  W. S. Lee,et al.  Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions , 2014 .

[14]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[15]  Xanthoula Eirini Pantazi,et al.  Wheat yield prediction using machine learning and advanced sensing techniques , 2016, Comput. Electron. Agric..

[16]  Herbert Kimura,et al.  Machine learning models and bankruptcy prediction , 2017, Expert Syst. Appl..

[17]  Yong Zhang,et al.  CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine , 2007, Nucleic Acids Res..

[18]  Marko Bohanec,et al.  Explaining machine learning models in sales predictions , 2017, Expert Syst. Appl..

[19]  H. Ramon,et al.  Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks , 2004 .

[20]  Robert E. Schapire,et al.  A Brief Introduction to Boosting , 1999, IJCAI.

[21]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[22]  D. Cox The Regression Analysis of Binary Sequences , 1958 .

[23]  L. Buydens,et al.  Supervised Kohonen networks for classification problems , 2006 .

[24]  Jafar Habibi,et al.  Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature , 2016, Comput. Electron. Agric..

[25]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[26]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[27]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[28]  Saeid Minaei,et al.  Vision-based pest detection based on SVM classification method , 2017, Comput. Electron. Agric..

[29]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[30]  Konstantinos P. Ferentinos,et al.  Deep learning models for plant disease detection and diagnosis , 2018, Comput. Electron. Agric..

[31]  Eva Jakob,et al.  Fast detection of pathogens in salmon farming industry , 2017 .

[32]  R. Shah,et al.  Least Squares Support Vector Machines , 2022 .

[33]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[34]  Blaine A. Price,et al.  Remote electronic examinations: student experiences , 2002, Br. J. Educ. Technol..

[35]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[36]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[37]  Zhiping Lin,et al.  Self-Adaptive Evolutionary Extreme Learning Machine , 2012, Neural Processing Letters.

[38]  B. De Baets,et al.  Artificial neural network models of the rumen fermentation pattern in dairy cattle , 2008 .

[39]  Dimitrios Moshou,et al.  Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier , 2014 .

[40]  Saeid Mehdizadeh,et al.  Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration , 2017, Comput. Electron. Agric..

[41]  Venkat Reddy Konasani,et al.  Multiple Regression Analysis , 2015 .

[42]  J. Flickinger,et al.  Machine Learning Approaches for Predicting Radiation Therapy Outcomes: A Clinician's Perspective. , 2015, International journal of radiation oncology, biology, physics.

[43]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[44]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[45]  Roberto Kawakami Harrop Galvão,et al.  A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm , 2008 .

[46]  H. Ramon,et al.  Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps , 2006, Precision Agriculture.

[47]  Yong Peng,et al.  Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data , 2017, Comput. Electron. Agric..

[48]  Shigeki Sugano,et al.  Tool-body assimilation model considering grasping motion through deep learning , 2017, Robotics Auton. Syst..

[49]  Sankar K. Pal,et al.  Multilayer perceptron, fuzzy sets, and classification , 1992, IEEE Trans. Neural Networks.

[50]  Maurizio Valle,et al.  A tensor-based approach to touch modality classification by using machine learning , 2015, Robotics Auton. Syst..

[51]  Qin Zhang,et al.  Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting , 2016 .

[52]  Dimitrios Moshou,et al.  Active learning system for weed species recognition based on hyperspectral sensing , 2016 .

[53]  R. Hecht-Nielsen Counterpropagation networks. , 1987, Applied optics.

[54]  Jianping Li,et al.  A deep learning ensemble approach for crude oil price forecasting , 2017 .

[55]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[56]  Jaime Alonso,et al.  Support Vector Regression to predict carcass weight in beef cattle in advance of the slaughter , 2013 .

[57]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[58]  J. Senthilnath,et al.  Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV , 2016 .

[59]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[60]  K. Ming Leung,et al.  Learning Vector Quantization , 2017, Encyclopedia of Machine Learning and Data Mining.

[61]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[62]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[63]  André R. Hirakawa,et al.  Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener , 2016, Comput. Electron. Agric..

[64]  Changying Li,et al.  Classification of foreign matter embedded inside cotton lint using short wave infrared (SWIR) hyperspectral transmittance imaging , 2017, Comput. Electron. Agric..

[65]  Carlos Eugenio Oliveros,et al.  Automatic fruit count on coffee branches using computer vision , 2017, Comput. Electron. Agric..

[66]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Alex Alves Freitas,et al.  An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives , 2017, Expert Syst. Appl..

[68]  Greg Bishop-Hurley,et al.  Dynamic cattle behavioural classification using supervised ensemble classifiers , 2015, Comput. Electron. Agric..

[69]  Hsu-Yang Kung,et al.  Accuracy Analysis Mechanism for Agriculture Data Using the Ensemble Neural Network Method , 2016 .

[70]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.

[71]  Jaime Alonso,et al.  Improved estimation of bovine weight trajectories using Support Vector Machine Classification , 2015, Comput. Electron. Agric..

[72]  David Horton Smith The philanthropy business , 1978 .

[73]  William Stafford Noble,et al.  Support vector machine , 2013 .

[74]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[75]  Paresh Chandra Deka,et al.  An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs , 2016, Comput. Electron. Agric..

[76]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[77]  Sebastian D. Mackowiak,et al.  Extensive identification and analysis of conserved small ORFs in animals , 2015, Genome Biology.

[78]  Melvyn L. Smith,et al.  Towards on-farm pig face recognition using convolutional neural networks , 2018, Comput. Ind..

[79]  Xiao Yang,et al.  Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network , 2017, 1707.06611.

[80]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[81]  Antonio Trifirò,et al.  Italian tomato-based products authentication by multi-element approach: A mineral elements database to distinguish the domestic provenance , 2018, Food Control.

[82]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[83]  Roberto Oberti,et al.  Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps , 2005, Real Time Imaging.

[84]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[85]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[86]  Huan Xu,et al.  Support vector machine-based open crop model (SBOCM): Case of rice production in China , 2017, Saudi journal of biological sciences.

[87]  Shervin Motamedi,et al.  Extreme learning machine based prediction of daily dew point temperature , 2015, Comput. Electron. Agric..

[88]  Xanthoula Eirini Pantazi,et al.  Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy , 2017, Comput. Electron. Agric..

[89]  Richard E. Neapolitan Models for reasoning under uncertainty , 1987, Appl. Artif. Intell..

[90]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[91]  Enrique Fernández-Blanco,et al.  Early warning in egg production curves from commercial hens: A SVM approach , 2016, Comput. Electron. Agric..

[92]  Bin Zhang,et al.  Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. , 2017, Cancer letters.

[93]  J. R. Quinlan Learning With Continuous Classes , 1992 .

[94]  Lan Chen,et al.  Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture , 2018, Comput. Electron. Agric..

[95]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[96]  Rebecca L. Whetton,et al.  Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy , 2016 .

[97]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[98]  Evan J. Coopersmith,et al.  Machine learning assessments of soil drying for agricultural planning , 2014 .

[99]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[100]  Fiona Cawkwell,et al.  Modeling Managed Grassland Biomass Estimation by Using Multitemporal Remote Sensing Data—A Machine Learning Approach , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[101]  G. Hutcheson Ordinary Least-Squares Regression , 1999 .

[102]  Yan-Fu Kuo,et al.  Detecting Bakanae disease in rice seedlings by machine vision , 2016, Comput. Electron. Agric..

[103]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[104]  Ye Sun,et al.  Differentiation of deciduous-calyx and persistent-calyx pears using hyperspectral reflectance imaging and multivariate analysis , 2017, Comput. Electron. Agric..

[105]  Xanthoula Eirini Pantazi,et al.  Evaluation of hierarchical self-organising maps for weed mapping using UAS multispectral imagery , 2017, Comput. Electron. Agric..

[106]  Leandro Zen Karam,et al.  In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning , 2015, Sensors.

[107]  C. W. Fox,et al.  Controlled comparison of machine vision algorithms for Rumex and Urtica detection in grassland , 2017, Comput. Electron. Agric..

[108]  Tony Badrick,et al.  Higher Dimensions : Machine-Learning and Enhanced Prediction from Routine Clinical Chemistry Data , 2016 .

[109]  T. Kamarul,et al.  Multiple regression analysis of factors influencing dominant hand grip strength in an adult Malaysian population , 2012, The Journal of hand surgery, European volume.

[110]  Pablo M. Granitto,et al.  Deep learning for plant identification using vein morphological patterns , 2016, Comput. Electron. Agric..

[111]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[112]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[113]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[114]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[115]  William A. Belson,et al.  Matching and Prediction on the Principle of Biological Classification , 1959 .

[116]  J. Sanz-Justo,et al.  A novel Grouping Genetic Algorithm–Extreme Learning Machine approach for global solar radiation prediction from numerical weather models inputs , 2016 .