Learning Importance of Preferences

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.

[1]  Eyke Hüllermeier,et al.  Preferences in AI: An overview , 2011, Artif. Intell..

[2]  József Dombi,et al.  Learning lexicographic orders , 2007, Eur. J. Oper. Res..

[3]  Loizos Michael,et al.  Ceteris Paribus Preference Elicitation with Predictive Guarantees , 2009, IJCAI.

[4]  Eyke Hüllermeier,et al.  Learning Conditional Lexicographic Preference Trees , 2014 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Judy Goldsmith,et al.  Learning CP-Net Preferences Online from User Queries , 2013, AAAI.

[7]  Bruno Zanuttini,et al.  Learning conditional preference networks , 2010, Artif. Intell..

[8]  Souhila Kaci,et al.  Working with Preferences: Less Is More , 2011, Cognitive Technologies.

[9]  P. Fishburn,et al.  Voting Procedures , 2022 .

[10]  Eyke Hüllermeier,et al.  Pairwise Preference Learning and Ranking , 2003, ECML.

[11]  Miroslaw Truszczynski,et al.  Preference Trees: A Language for Representing and Reasoning about Qualitative Preferences , 2014, MPREF@AAAI.

[12]  Patrice Perny,et al.  GAI Networks for Utility Elicitation , 2004, KR.

[13]  Yuval Shahar,et al.  Utility Elicitation as a Classification Problem , 1998, UAI.

[14]  Yann Chevaleyre,et al.  Learning conditionally lexicographic preference relations , 2010, ECAI.

[15]  Miroslaw Truszczynski,et al.  Learning Partial Lexicographic Preference Trees over Combinatorial Domains , 2015, AAAI.

[16]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[17]  Michael Schmitt,et al.  On the Complexity of Learning Lexicographic Strategies , 2006, J. Mach. Learn. Res..

[18]  Peter Haddawy,et al.  Problem-Focused Incremental Elicitation of Multi-Attribute Utility Models , 1997, UAI.

[19]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..

[20]  Daphne Koller,et al.  Making Rational Decisions Using Adaptive Utility Elicitation , 2000, AAAI/IAAI.

[21]  Ilkka Niemelä,et al.  Implementing Ordered Disjunction Using Answer Set Solvers for Normal Programs , 2002, JELIA.

[22]  Yann Chevaleyre,et al.  Learning Ordinal Preferences on Multiattribute Domains: The Case of CP-nets , 2010, Preference Learning.

[23]  Bruno Zanuttini,et al.  Learning Conditional Preference Networks with Queries , 2009, IJCAI.

[24]  Craig Boutilier,et al.  Local Utility Elicitation in GAI Models , 2005, UAI.

[25]  Miroslaw Truszczynski,et al.  Reasoning with Preference Trees over Combinatorial Domains , 2015, ADT.