FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud–cloud collision

We present $^{12}$CO $J=$1--0, $^{13}$CO $J=$1--0 and C$^{18}$O $J=$1--0 images of the M17 giant molecular clouds obtained as part of FUGIN (FOREST Ultra-wide Galactic Plane Survey InNobeyama) project. The observations cover the entire area of M17 SW and M17 N clouds at the highest angular resolution ($\sim$19$"$) to date which corresponds to $\sim$ 0.15 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: very low velocity (VLV) clump, low velocity component (LVC), main velocity component (MVC), and high velocity component (HVC). The LVC and the HVC have cavities. UV photons radiated from NGC 6618 cluster penetrate into the N cloud up to $\sim$ 5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of YSOs in the N cloud. The LVC and the HVC are distributed complementary after that the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC create the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s$^{-1}$ and $1.1 \times 10^{5}$ yr, respectively. The high collision velocity can provide the mass accretion rate up to 10$^{-3}$ $M_{\solar}$ yr$^{-1}$, and the high column density ($4 \times 10^{23}$ cm$^{-2}$) might result in massive cluster formation. The scenario of cloud-cloud collision likely well explains the stellar population and its formation history of NGC 6618 cluster proposed by Hoffmeister et al. (2008).

[1]  E. Tasker,et al.  Environmental dependence of star formation induced by cloud collisions in a barred galaxy , 2014, 1408.4863.

[2]  Tsuyoshi Inoue,et al.  Formation of the young massive cluster R136 triggered by tidally-driven colliding H i flows , 2017, 1703.01075.

[3]  S. Anathpindika Collision between dissimilar clouds: stability of the bow-shock, and the formation of pre-stellar cores , 2010 .

[4]  H. Maezawa,et al.  MOLECULAR CLOUDS TOWARD THE SUPER STAR CLUSTER NGC 3603; POSSIBLE EVIDENCE FOR A CLOUD–CLOUD COLLISION IN TRIGGERING THE CLUSTER FORMATION , 2013, 1306.2090.

[5]  C. Wilson,et al.  The Large-Scale J = 3 → 2 and J = 2 → 1 CO Emission from M17 and Its Implications for Extragalactic CO Observations , 1999, astro-ph/9901134.

[6]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[7]  C. Lada,et al.  Discovery of an extended (85 pc) molecular cloud associated with the M17 star-forming complex. , 1976 .

[8]  R. Indebetouw,et al.  KINEMATIC STRUCTURE OF MOLECULAR GAS AROUND HIGH-MASS YSO, PAPILLON NEBULA, IN N159 EAST IN THE LARGE MAGELLANIC CLOUD: A NEW PERSPECTIVE WITH ALMA , 2016, 1604.06010.

[9]  Tokyo,et al.  REVEALING THE PHYSICAL PROPERTIES OF MOLECULAR GAS IN ORION WITH A LARGE-SCALE SURVEY IN J = 2–1 LINES OF 12CO, 13CO, AND C18O , 2014, 1412.0790.

[10]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[11]  K. Dobashi,et al.  STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW , 2014, 1412.5741.

[12]  K. Torii,et al.  Triggered O Star Formation in M20 via Cloud–Cloud Collision: Comparisons between High-resolution CO Observations and Simulations , 2016, 1612.09458.

[13]  H. Yamamoto,et al.  CLOUD–CLOUD COLLISION AS A TRIGGER OF THE HIGH-MASS STAR FORMATION: A MOLECULAR LINE STUDY IN RCW 120 , 2015, 1503.00070.

[14]  Molecular gas in the H ii-region complex RCW 166: Possible evidence for an early phase of cloud–cloud collision prior to the bubble formation , 2017, 1706.05659.

[15]  J. Whiteoak,et al.  A Large-Scale Cloud Collision in the Galactic Center Molecular Cloud near Sagittarius B2 , 1994 .

[16]  C. Clarke,et al.  Accretion in stellar clusters and the IMF , 2001, astro-ph/0102121.

[17]  Gordon J. Stacey,et al.  Submillimeter and far-infrared line observations of M17 SW - A clumpy molecular cloud penetrated by ultraviolet radiation , 1988 .

[18]  E. Tasker,et al.  The effect of photoionizing feedback on star formation in isolated and colliding clouds , 2017, 1710.02285.

[19]  E. Tasker,et al.  DO CLOUD–CLOUD COLLISIONS TRIGGER HIGH-MASS STAR FORMATION? I. SMALL CLOUD COLLISIONS , 2014, 1407.4544.

[20]  Y. Wang,et al.  L1188: A Promising Candidate for Cloud–Cloud Collisions Triggering the Formation of Low- and Intermediate-mass Stars , 2017, 1701.03556.

[21]  Bonn,et al.  The ionized and hot gas in M17 SW: SOFIA/GREAT THz observations of [C II] and 12CO J=13-12 , 2012, 1203.1560.

[22]  Y. Fukui,et al.  Molecular clouds in the NGC 6334 and NGC 6357 region: Evidence for a 100 pc-scale cloud-cloud collision triggering the Galactic mini-starbursts , 2017, 1706.05771.

[23]  Bonn,et al.  Detection of a large fraction of atomic gas not associated with star-forming material in M17 SW , 2015, 1501.02735.

[24]  Benjamin Wu,et al.  GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations , 2016, The Astrophysical Journal.

[25]  M. Honma,et al.  Astrometry and expanding bubble of a deeply embedded young stellar object in M17 , 2016 .

[26]  R. Indebetouw,et al.  HIGH-MASS STAR FORMATION TRIGGERED BY COLLISION BETWEEN CO FILAMENTS IN N159 WEST IN THE LARGE MAGELLANIC CLOUD , 2015, 1503.03540.

[27]  D. Iono,et al.  CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH , 2014, 1407.1235.

[28]  Y. Fukui Formation of the super star cluster RCW 38 triggered by cloud-cloud collision , 2015, Proceedings of the International Astronomical Union.

[29]  E. Bergin,et al.  A Survey of the Chemical Properties of the M17 and Cepheus A Cloud Cores , 1997, The Astrophysical journal.

[30]  K. Hayashi,et al.  RCW 36 in the Vela Molecular Ridge: Evidence for high-mass star-cluster formation triggered by cloud-cloud collision , 2017, 1706.05763.

[31]  K. Dobashi,et al.  STAR FORMATION AND DISTRIBUTIONS OF GAS AND DUST IN THE CIRCINUS CLOUD , 2011 .

[32]  Molecular Clouds in the Trifid Nebula M20: Possible Evidence for a Cloud-Cloud Collision in Triggering the Formation of the First Generation Stars , 2011, 1106.3603.

[33]  R. Sutherland,et al.  The density variance - Mach number relation in isothermal and non-isothermal adiabatic turbulence , 2015, 1504.04370.

[34]  C. Clarke,et al.  Accretion in stellar clusters and the initial mass function , 2001 .

[35]  Astrophysics,et al.  Understanding star formation in molecular clouds III. Probability distribution functions of molecular lines in Cygnus X , 2015, 1509.01082.

[36]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[37]  C. Lada,et al.  The M17 SW molecular cloud , 1983 .

[38]  Robert N. Martin,et al.  Submillimeter Observations of CS in M17 , 1986 .

[39]  Yukinori Kobayashi,et al.  FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope (FUGIN) I: Project Overview and Initial Results , 2017, 1707.05981.

[40]  A. Raga,et al.  COMPACT RADIO SOURCES IN M17 , 2012, 1206.5339.

[41]  S. E. Jaffa,et al.  Star formation triggered by cloud–cloud collisions , 2015, 1509.05287.

[42]  Y. Fukui,et al.  A new view of the giant molecular cloud M16 (Eagle Nebula) in 12CO J=1-0 and 2-1 transitions with NANTEN2 , 2017, 1706.06002.

[43]  A. Miyazaki,et al.  Cloud-cloud Collision in the Galactic Center 50 km s$^{-1}$ Molecular Cloud , 2015, 1507.08351.

[44]  R. Hills,et al.  CO emission from fragmentary molecular clouds: a model applied to observations of M17 SW , 1984 .

[45]  R. Indebetouw,et al.  THE EXTENDED ENVIRONMENT OF M17: A STAR FORMATION HISTORY , 2009, 0902.3280.

[46]  E. Tasker,et al.  Isolating signatures of major cloud–cloud collisions – II. The lifetimes of broad bridge features , 2015, 1509.00859.

[47]  L. Dewangan Star Formation Activity in the Molecular Cloud G35.20–0.74: Onset of Cloud–Cloud Collision , 2017, 1702.00007.

[48]  H. Kaneda,et al.  SPATIAL VARIATIONS OF PAH PROPERTIES IN M17SW REVEALED BY SPITZER/IRS SPECTRAL MAPPING , 2016, 1607.03622.

[49]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[50]  T. Okuda,et al.  Digital Spectro-Correlator System for the Atacama Compact Array of the Atacama Large Millimeter/submillimeter Array , 2012 .

[51]  R. Indebetouw,et al.  A Multiwavelength Study of M17: The Spectral Energy Distribution and PAH Emission Morphology of a Massive Star Formation Region , 2007 .

[52]  Y. Fukui,et al.  High-mass star formation in Orion B triggered by cloud–cloud collision: Merging molecular clouds in NGC 2024 , 2017, Publications of the Astronomical Society of Japan.

[53]  N. Evans,et al.  Structure of Dense Cores in M17 SW. I. A Multitransition CS and C 34S Study , 1993 .

[54]  T. Sawada,et al.  On-The-Fly Observing System of the Nobeyama 45-m and ASTE 10-m Telescopes , 2007, 0712.1283.

[55]  Annie Zavagno,et al.  Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites , 2011, 1108.0941.

[56]  T. Iwata,et al.  Evidence for a rotating helical filament in L1641, part of the Orion cloud complex , 1991, Nature.

[57]  H. Yamamoto,et al.  THE TWO MOLECULAR CLOUDS IN RCW 38: EVIDENCE FOR THE FORMATION OF THE YOUNGEST SUPER STAR CLUSTER IN THE MILKY WAY TRIGGERED BY CLOUD–CLOUD COLLISION , 2015, 1504.05391.

[58]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[59]  T. Umemoto,et al.  FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation , 2017, 1706.07964.

[60]  J. Ninan,et al.  A MULTI-WAVELENGTH STUDY OF STAR FORMATION ACTIVITY IN THE S235 COMPLEX , 2016, 1601.04488.

[61]  K. Menten,et al.  Disentangling the excitation conditions of the dense gas in M17 SW , 2015, 1508.06699.

[62]  E. Tasker,et al.  Isolating signatures of major cloud–cloud collisions using position–velocity diagrams , 2015, 1503.06795.

[63]  J. Whiteoak,et al.  Cloud Collision-induced Star Formation in Sagittarius B2. I. Large-Scale Kinematics , 2000 .

[64]  Benjamin Wu,et al.  GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation , 2017, 1702.08117.

[65]  Tsuyoshi Inoue,et al.  FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD–CLOUD COLLISION , 2013, 1305.4655.

[66]  R. Klessen,et al.  Understanding star formation in molecular clouds - I. Effects of line-of-sight contamination on the column density structure , 2014, 1403.2996.

[67]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[68]  S. Anathpindika Supersonic Cloud Collision-II , 2009, 0901.0975.

[69]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[70]  R. Klessen,et al.  The SILCC project - IV. Impact of dissociating and ionizing radiation on the interstellar medium and Hα emission as a tracer of the star formation rate , 2016, 1610.06569.

[71]  Ralf S. Klessen One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media , 2000 .

[72]  Kimihiro Kimura,et al.  MOLECULAR CLUMPS AND INFRARED CLUSTERS IN THE S247, S252, AND BFS52 REGIONS , 2013 .

[73]  R. Dickman,et al.  The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds , 1978 .

[74]  TEMPERATURE AND DENSITY DISTRIBUTION IN THE MOLECULAR GAS TOWARD WESTERLUND 2: FURTHER EVIDENCE FOR PHYSICAL ASSOCIATION , 2009, 0912.3042.

[75]  Zhi-Yun Li,et al.  EVIDENCE FOR CLOUD–CLOUD COLLISION AND PARSEC-SCALE STELLAR FEEDBACK WITHIN THE L1641-N REGION , 2011, 1110.6225.

[76]  R. Chini,et al.  The Stellar Population of M17 , 2008 .

[77]  K. Dobashi,et al.  COLLIDING FILAMENTS AND A MASSIVE DENSE CORE IN THE CYGNUS OB 7 MOLECULAR CLOUD , 2014, 1411.0942.

[78]  S. Okumura,et al.  A Large-Scale CO Mapping of the Central Region of W 51 , 2001 .

[79]  Leiden Observatory,et al.  CHAMP+ observations of warm gas in M 17 SW , 2009, 0910.4937.

[80]  Y. Fukui,et al.  A New Look at the Molecular Gas in M42 and M43: Possible Evidence for Cloud–Cloud Collision that Triggered Formation of the OB Stars in the Orion Nebula Cluster , 2017, The Astrophysical Journal.

[81]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[82]  Astronomy,et al.  GMC COLLISIONS AS TRIGGERS OF STAR FORMATION. I. PARAMETER SPACE EXPLORATION WITH 2D SIMULATIONS , 2015, 1503.01873.

[83]  E. Tasker,et al.  Formation of massive, dense cores by cloud-cloud collisions , 2017, 1706.08656.

[84]  A. Whitworth,et al.  Star formation triggered by non-head-on cloud-cloud collisions, and clouds with pre-collision sub-structure , 2017 .

[85]  E. Vázquez-Semadeni Hierarchical Structure in Nearly Pressureless Flows as a Consequence of Self-similar Statistics , 1994 .

[86]  H. Zinnecker,et al.  Toward Understanding Massive Star Formation , 2007, 0707.1279.

[87]  The MYStIX Infrared-Excess Source Catalog , 2013, 1309.4497.

[88]  J. Ninan,et al.  STAR FORMATION AROUND MID-INFRARED BUBBLE N37: EVIDENCE OF CLOUD–CLOUD COLLISION , 2016, 1609.06440.

[89]  A. Whitworth,et al.  Dispersal of molecular clouds by ionizing radiation , 2012, 1206.6492.

[90]  A. Duarte-Cabral,et al.  The frequency and nature of ‘cloud–cloud collisions’ in galaxies , 2014, 1411.0840.

[91]  C. Lada,et al.  Discovery and CO observations of a new molecular source near M17 , 1974 .

[92]  Yutaka Hasegawa,et al.  Development of the new multi-beam 100 GHz band SIS receiver FOREST for the Nobeyama 45-m Telescope , 2016, Astronomical Telescopes + Instrumentation.

[93]  M. Hanson,et al.  Two Molecular Clouds near M17 , 2003 .

[94]  C. McKee,et al.  The Formation of Massive Stars from Turbulent Cores , 2002, astro-ph/0206037.

[95]  H. Kaneda,et al.  A Massive Molecular Outflow in the Dense Dust Core AGAL G337.916-00.477 , 2016, 1604.05789.

[96]  Y. Fukui,et al.  High-mass star formation in Orion possibly triggered by cloud–cloud collision. III. NGC 2068 and NGC 2071 , 2017, Publications of the Astronomical Society of Japan.

[97]  2MASS wide field extinction maps. I. The Pipe nebula , 2006, astro-ph/0606670.

[98]  D. Ojha,et al.  MULTIWAVELENGTH STUDY OF THE STAR FORMATION IN THE S237 H ii REGION , 2016, 1610.08428.

[99]  K. Hayashi,et al.  High-mass star formation possibly triggered by cloud-cloud collision in the H II region RCW 34 , 2017, 1706.05871.

[100]  Heidelberg,et al.  Cluster-formation in the Rosette molecular cloud at the junctions of filaments , 2012, Astronomy & Astrophysics.

[101]  A. Kawamura,et al.  MOLECULAR CLOUDS TOWARD RCW49 AND WESTERLUND 2: EVIDENCE FOR CLUSTER FORMATION TRIGGERED BY CLOUD–CLOUD COLLISION , 2009, 0904.0286.

[102]  C. Lada Detailed observations of the M17 molecular cloud complex , 1976 .

[103]  S. Anathpindika Supersonic cloud collision. I. , 2008, 0810.5011.

[104]  J. Stutzki,et al.  High spatial resolution isotopic CO and CS observations of M17 SW - The clumpy structure of the molecular cloud core , 1989 .

[105]  M. Hobson High-resolution HCO+ and HCN observations of M17SW: clumps, turbulence and cloud support , 1992 .