Guidance command generation and nonlinear dynamic inversion control for reusable launch vehicles

Abstract Future launch vehicle concepts and technologies for expendable and reusable launch vehicles are currently investigated by the DLR research projects Akira and X-tras . In particular, the winged Liquid Fly-back Booster concept Lfbb based on an LOX/LH2 propellant combination for vertical takeoff and vertical landing (VTVL), as well as the delta-winged horizontal takeoff and horizontal landing (HTHL) concept Aurora based on an LOX/Kerosene propellant combination are considered in these projects. Because of the complexity and risks involved in on-line trajectory optimization, off-line reference trajectories are still considered important for tracking purposes. In that sense, the goal of this paper is to investigate an off-line and general-purpose guidance and control (G&C) architecture for preliminary studies of reusable launch vehicles. This is done by using trajectory optimization combined with Modelica models for the generation of optimal guidance commands, and then trajectory tracking is performed by means of inner-loop feedback controls in terms of nonlinear dynamic inversion with prescribed desired dynamics. We showcase the advantages of this baseline G&C architecture in terms of early stability and controllability aspects during the preliminary design studies of an example configuration of a reusable launch vehicle investigated in the context of the research projects above mentioned.

[1]  Hilding Elmqvist,et al.  Modelica—An International Effort to Design an Object-Oriented Modeling Language , 1998 .

[2]  Martin Sippel,et al.  Systematic Assessment of Reusable First-Stage Return Options , 2017 .

[3]  Gertjan Looye An Integrated Approach to Aircraft Modelling and Flight Control Law Design , 2008 .

[4]  Martin Sippel,et al.  The SpaceLiner Concept and its Aerothermodynamic Challenges , 2006 .

[5]  Erik-Jan van Kampen,et al.  Robust Nonlinear Spacecraft Attitude Control using Incremental Nonlinear Dynamic Inversion. , 2012 .

[6]  Johann Bals,et al.  Nonlinear inverse models for the control of satellites with flexible structures , 2014 .

[7]  Hilding Elmqvist,et al.  Physical system modeling with Modelica , 1998 .

[8]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[9]  Martin Sippel,et al.  Long-term/strategic scenario for reusable booster stages , 2006 .

[10]  Klaus Schnepper,et al.  Advanced modeling and trajectory optimization framework for reusable launch vehicles , 2018, 2018 IEEE Aerospace Conference.

[11]  Jan Albert Mulder,et al.  Reentry Flight Controller Design Using Nonlinear Dynamic Inversion , 2003 .

[12]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[13]  Martin Sippel,et al.  Comparison of Return Options for Reusable First Stages , 2017 .

[14]  Alexandra Kopp,et al.  DAS AURORA-R2 RLV-KONZEPT , 2017 .

[15]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[16]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[17]  Jascha Wilken,et al.  SpaceLiner Concept as Catalyst for Advanced Hypersonic Vehicles Research , 2017 .

[18]  Gary J. Balas,et al.  Flight control design using robust dynamic inversion and time-scale separation , 1996, Autom..

[19]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[20]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[21]  Peter A. Fritzson,et al.  Principles of object-oriented modeling and simulation with Modelica 2.1 , 2004 .

[22]  B. PaulAcquatella Launch vehicle multibody dynamics modeling framework for preliminary design studies , 2016 .

[23]  Gertjan Looye Design of Robust Autopilot Control Laws with Nonlinear Dynamic Inversion , 2001 .

[24]  Martin Sippel Promising roadmap alternatives for the SpaceLiner , 2010 .

[25]  Michael Tiller,et al.  Introduction to Physical Modeling with Modelica , 2001 .

[26]  P R Smith,et al.  A SIMPLIFIED APPROACH TO NONLINEAR DYNAMIC INVERSION BASED FLIGHT CONTROL , 1998 .

[27]  Martin Sippel,et al.  Assessment of a European Reusable VTVL Booster Stage , 2018 .

[28]  S. Juliana Re-entry flight clearance , 2006 .

[29]  Jan Albert Mulder,et al.  Robust Flight Control Using Incremental Nonlinear Dynamic Inversion and Angular Acceleration Prediction , 2010 .

[30]  Suresh M. Joshi,et al.  Reconfigurable NDI controller using inertial sensor failure detection & isolation , 2001 .

[31]  Aaron J. Ostroff,et al.  RECONFIGURABLE FLIGHT CONTROL USING NONLINEAR DYNAMIC INVERSION WITH A SPECIAL ACCELEROMETER IMPLEMENTATION , 2000 .

[32]  Martin Sippel,et al.  Investigations of Future Expendable Launcher Options , 2011 .

[33]  A. Isidori Nonlinear Control Systems , 1985 .

[34]  B. PaulAcquatella,et al.  Multidisciplinary modeling and simulation framework for launch vehicle system dynamics and control , 2020 .

[35]  B. PaulAcquatella,et al.  PI(D) tuning for Flight Control Systems via Incremental Nonlinear Dynamic Inversion , 2017, ArXiv.

[36]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[37]  Jan Albert Mulder,et al.  Flight Control Reconfiguration Based on Online Physical Model Identification and Nonlinear Dynamic Inversion , 2008 .

[38]  Jan Albert Mulder,et al.  The Analytical Derivation of Nonlinear Dynamic Inversion Control for Parametric Uncertain System , 2005 .

[39]  Hans Olsson,et al.  New Features in Modelica 2.0 , 2002 .

[40]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[41]  Martin Sippel,et al.  FORSCHUNG AN SYSTEMEN UND TECHNOLOGIEN FÜR WIEDERVERWENDBARE RAUMTRANSPORTSYSTEME IM DLR-PROJEKT AKIRA , 2017 .