On the Complexity of Selecting Disjunctions in Integer Programming

The imposition of general disjunctions of the form “$\pi x\leq\pi_0\vee\pi x\geq\pi_0+1$,” where $\pi,\pi_0$ are integer-valued, is a fundamental operation in both the branch-and-bound and cutting-plane algorithms for solving mixed integer linear programs. Such disjunctions can be used for branching at each iteration of the branch-and-bound algorithm or to generate split inequalities for the cutting-plane algorithm. We first consider the problem of selecting a general disjunction and show that the problem of selecting an optimal such disjunction, according to specific criteria described herein, is $\mathcal{NP}$-hard. We further show that the problem remains $\mathcal{NP}$-hard even for binary programs or when considering certain restricted classes of disjunctions. We observe that the problem of deciding whether a given inequality is a split inequality can be reduced to one of the above problems, which leads to a proof that the problem is $\mathcal{NP}$-complete.

[1]  Gérard Cornuéjols,et al.  Improved strategies for branching on general disjunctions , 2011, Math. Program..

[2]  Alberto Caprara,et al.  On the separation of split cuts and related inequalities , 2003, Math. Program..

[3]  Jorge R. Vera,et al.  Improving the efficiency of the Branch and Bound algorithm for integer programming based on "flatness" information , 2006, Eur. J. Oper. Res..

[4]  A. Mahajan,et al.  Experiments with Branching using General Disjunctions , 2009 .

[5]  John W. Chinneck,et al.  Active-constraint variable ordering for faster feasibility of mixed integer linear programs , 2007, Math. Program..

[6]  Gábor Pataki,et al.  Column basis reduction and decomposable knapsack problems , 2008, Discret. Optim..

[7]  Reznick,et al.  An Introduction to Empty Lattice-simplices , 1999 .

[8]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[9]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[10]  F. Eisenbrand,et al.  Integer Programming, Lattices, and Results in Fixed Dimension , 2004 .

[11]  Gérard Cornuéjols,et al.  Branching on general disjunctions , 2011, Math. Program..

[12]  Matteo Fischetti,et al.  Local branching , 2003, Math. Program..

[13]  Tuomas Sandholm,et al.  Information-theoretic approaches to branching in search , 2006, AAMAS '06.

[14]  Martin W. P. Savelsbergh,et al.  A Computational Study of Search Strategies for Mixed Integer Programming , 1999, INFORMS J. Comput..

[15]  Sanjay Mehrotra,et al.  Experimental Results on Using General Disjunctions in Branch-and-Bound for General-Integer Linear Programs , 2001, Comput. Optim. Appl..

[16]  Alexander E. Litvak,et al.  The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..

[17]  Egon Balas,et al.  Optimizing over the split closure , 2008, Math. Program..

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  Paolo Liberatore,et al.  On the complexity of choosing the branching literal in DPLL , 2000, Artif. Intell..

[20]  D K Ingram,et al.  Is thinner better? , 1984, International journal of obesity.

[21]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[22]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[23]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[24]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[25]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[26]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..