A trip in the “New Microbiology” with the bacterial pathogen Listeria monocytogenes

[1]  A. Helenius,et al.  Endocytosis of viruses and bacteria. , 2014, Cold Spring Harbor perspectives in biology.

[2]  P. Cossart,et al.  The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons , 2014, Front. Cell. Infect. Microbiol..

[3]  H. Endtz,et al.  The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria , 2014, Microbiology and Molecular Reviews.

[4]  T. Rattei,et al.  Ultra Deep Sequencing of Listeria monocytogenes sRNA Transcriptome Revealed New Antisense RNAs , 2014, PloS one.

[5]  L. Marraffini,et al.  Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. , 2014, Current opinion in microbiology.

[6]  P. Cossart,et al.  Structural Basis for the Inhibition of the Chromatin Repressor BAHD1 by the Bacterial Nucleomodulin LntA , 2014, mBio.

[7]  M. Touchon,et al.  A PNPase Dependent CRISPR System in Listeria , 2014, PLoS genetics.

[8]  P. Cossart,et al.  The Intestinal Microbiota Interferes with the microRNA Response upon Oral Listeria Infection , 2013, mBio.

[9]  Estela Rodríguez-Del Río,et al.  Dissociation of Innate Immune Responses in Microglia Infected with Listeria monocytogenes , 2013, Glia.

[10]  Shoh M. Asano,et al.  Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails , 2013, Proceedings of the National Academy of Sciences.

[11]  P. Cossart,et al.  Atypical mitochondrial fission upon bacterial infection , 2013, Proceedings of the National Academy of Sciences.

[12]  J. Coppee,et al.  A Role for SIRT2-Dependent Histone H3K18 Deacetylation in Bacterial Infection , 2013, Science.

[13]  Pascale Cossart,et al.  A riboswitch-regulated antisense RNA in Listeria monocytogenes , 2013, Proceedings of the National Academy of Sciences.

[14]  T. Decker,et al.  Route of Infection Determines the Impact of Type I Interferons on Innate Immunity to Listeria monocytogenes , 2013, PloS one.

[15]  J. Rothman,et al.  Live-attenuated Listeria-based immunotherapy , 2013, Expert review of vaccines.

[16]  C. Coch,et al.  RIG-I Detects Triphosphorylated RNA of Listeria monocytogenes during Infection in Non-Immune Cells , 2013, PloS one.

[17]  E. Yang,et al.  Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation , 2013, Nature Immunology.

[18]  R. Sorek,et al.  The excludon: a new concept in bacterial antisense RNA-mediated gene regulation , 2012, Nature Reviews Microbiology.

[19]  P. Cossart,et al.  A Common Clathrin‐Mediated Machinery Co‐ordinates Cell–Cell Adhesion and Bacterial Internalization , 2012, Traffic.

[20]  Pascale Cossart,et al.  Epigenetics and bacterial infections. , 2012, Cold Spring Harbor perspectives in medicine.

[21]  G. Hartmann,et al.  RIG‐I detects infection with live Listeria by sensing secreted bacterial nucleic acids , 2012, The EMBO journal.

[22]  P. Cossart,et al.  Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. , 2012, Cold Spring Harbor perspectives in medicine.

[23]  P. Cossart,et al.  Impact of lactobacilli on orally acquired listeriosis , 2012, Proceedings of the National Academy of Sciences.

[24]  P. Cossart,et al.  Role for Telomerase in Listeria monocytogenes Infection , 2012, Infection and Immunity.

[25]  O. Beretta,et al.  The Timing of IFNβ Production Affects Early Innate Responses to Listeria monocytogenes and Determines the Overall Outcome of Lethal Infection , 2012, PloS one.

[26]  P. Cossart,et al.  The New Microbiology: a conference at the Institut de France. , 2012, Comptes rendus. Biologies.

[27]  P. Cossart,et al.  Listeriolysin O: the Swiss army knife of Listeria. , 2012, Trends in microbiology.

[28]  P. Cossart,et al.  Activation of Type III Interferon Genes by Pathogenic Bacteria in Infected Epithelial Cells and Mouse Placenta , 2012, PloS one.

[29]  Pascale Cossart,et al.  Comparative transcriptomics of pathogenic and non-pathogenic Listeria species , 2012, Molecular systems biology.

[30]  P. Cossart,et al.  When bacteria target the nucleus: the emerging family of nucleomodulins , 2012, Cellular microbiology.

[31]  P. Cossart,et al.  Both TLR2 and TRIF Contribute to Interferon-β Production during Listeria Infection , 2012, PloS one.

[32]  P. Cossart,et al.  Phosphatidylinositol 5-Phosphatase Oculocerebrorenal Syndrome of Lowe Protein (OCRL) Controls Actin Dynamics during Early Steps of Listeria monocytogenes Infection* , 2012, The Journal of Biological Chemistry.

[33]  Pascale Cossart,et al.  Septins: the fourth component of the cytoskeleton , 2012, Nature Reviews Molecular Cell Biology.

[34]  P. Cossart Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes , 2011, Proceedings of the National Academy of Sciences.

[35]  M. Prevost,et al.  Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization , 2011, The Journal of cell biology.

[36]  P. Cossart,et al.  OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. , 2011, The Journal of infectious diseases.

[37]  E. Wiemer,et al.  Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy , 2011, PLoS pathogens.

[38]  P. Cossart,et al.  A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor. , 2011, Biophysical journal.

[39]  P. Cossart,et al.  K+ Efflux Is Required for Histone H3 Dephosphorylation by Listeria monocytogenes Listeriolysin O and Other Pore-Forming Toxins , 2011, Infection and Immunity.

[40]  A. Gautreau,et al.  A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response , 2011, Science.

[41]  P. Cossart,et al.  Cell biology and immunology of Listeria monocytogenes infections: novel insights , 2011, Immunological reviews.

[42]  P. Cossart,et al.  Listeria monocytogenes transiently alters mitochondrial dynamics during infection , 2011, Proceedings of the National Academy of Sciences.

[43]  T. Hartsch,et al.  The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages , 2011, Nucleic acids research.

[44]  C. Zimmer,et al.  Entrapment of intracytosolic bacteria by septin cage-like structures. , 2010, Cell host & microbe.

[45]  F. Colland,et al.  The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the IκB kinase subunit IKKα , 2010, Proceedings of the National Academy of Sciences.

[46]  L. Lenz,et al.  Antagonistic crosstalk between type I and II interferons and increased host susceptibility to bacterial infections , 2010, Virulence.

[47]  D. Portnoy,et al.  c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response , 2010, Science.

[48]  P. Cossart,et al.  Clathrin‐mediated endocytosis: What works for small, also works for big , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[49]  A. Dejean,et al.  Listeria monocytogenes impairs SUMOylation for efficient infection , 2010, Nature.

[50]  Laurent Blanchoin,et al.  A “Primer”-Based Mechanism Underlies Branched Actin Filament Network Formation and Motility , 2010, Current Biology.

[51]  L. Ponnala,et al.  Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs , 2009, BMC Genomics.

[52]  C. Buchrieser,et al.  A trans-Acting Riboswitch Controls Expression of the Virulence Regulator PrfA in Listeria monocytogenes , 2009, Cell.

[53]  C. Sasakawa,et al.  Listeria monocytogenes ActA-mediated escape from autophagic recognition , 2009, Nature Cell Biology.

[54]  P. Cossart,et al.  Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game. , 2009, Cell motility and the cytoskeleton.

[55]  P. Cossart,et al.  Human BAHD1 promotes heterochromatic gene silencing , 2009, Proceedings of the National Academy of Sciences.

[56]  M. Vergassola,et al.  The Listeria transcriptional landscape from saprophytism to virulence , 2009, Nature.

[57]  C. Buchrieser,et al.  In Vivo Transcriptional Profiling of Listeria monocytogenes and Mutagenesis Identify New Virulence Factors Involved in Infection , 2009, PLoS pathogens.

[58]  S. Guadagnini,et al.  Septin 11 Restricts InlB-mediated Invasion by Listeria , 2009, Journal of Biological Chemistry.

[59]  S. Guadagnini,et al.  Septins Regulate Bacterial Entry into Host Cells , 2009, PloS one.

[60]  P. Cossart,et al.  The actin propulsive machinery: the proteome of Listeria monocytogenes tails. , 2008, Biochemical and biophysical research communications.

[61]  C. Buchrieser,et al.  Comparative Transcriptome Analysis of Listeria monocytogenes Strains of the Two Major Lineages Reveals Differences in Virulence, Cell Wall, and Stress Response , 2007, Applied and Environmental Microbiology.

[62]  P. Cossart,et al.  Histone modifications induced by a family of bacterial toxins , 2007, Proceedings of the National Academy of Sciences.

[63]  J. Gordon,et al.  Functional Genomic Studies of the Intestinal Response to a Foodborne Enteropathogen in a Humanized Gnotobiotic Mouse Model* , 2007, Journal of Biological Chemistry.

[64]  J. Swanson,et al.  A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3‐kinase activation in the InlB/Met signalling pathway , 2007, Cellular microbiology.

[65]  M. Prevost,et al.  A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system , 2007, Proceedings of the National Academy of Sciences.

[66]  P. Cossart,et al.  The role of clathrin-dependent endocytosis in bacterial internalization , 2006, Trends in Cell Biology.

[67]  M. Wiedmann,et al.  Contributions of Listeria monocytogenes sigmaB and PrfA to expression of virulence and stress response genes during extra- and intracellular growth. , 2006, Microbiology.

[68]  P. Cossart,et al.  Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells , 2005, Nature Cell Biology.

[69]  P. Cossart,et al.  WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor , 2005, Journal of Cell Science.

[70]  Hiroshi Sagara,et al.  Escape of Intracellular Shigella from Autophagy , 2005, Science.

[71]  S. Harrison,et al.  Molecular model for a complete clathrin lattice from electron cryomicroscopy , 2004, Nature.

[72]  P. Cossart,et al.  Subversion of phosphoinositide metabolism by intracellular bacterial pathogens , 2004, Nature Cell Biology.

[73]  K. Chandran,et al.  Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits , 2004, Cell.

[74]  Ryan M. O’Connell,et al.  Type I Interferon Production Enhances Susceptibility to Listeria monocytogenes Infection , 2004, The Journal of experimental medicine.

[75]  P. Brown,et al.  A specific gene expression program triggered by Gram-positive bacteria in the cytosol. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  P. Cossart,et al.  Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells. , 2004, Comptes rendus biologies.

[77]  Sandra L. Schmid,et al.  Regulated portals of entry into the cell , 2003, Nature.

[78]  C. Buchrieser,et al.  Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA , 2003, Molecular microbiology.

[79]  Veena Vanchinathan,et al.  A gene-expression program reflecting the innate immune response of cultured intestinal epithelial cells to infection by Listeria monocytogenes , 2002, Genome Biology.

[80]  P. Cossart,et al.  An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes , 2002, Cell.

[81]  P. Cossart,et al.  Distinct protein patterns associated with Listeria monocytogenes InlA‐ or InlB‐phagosomes , 2002, Cellular microbiology.

[82]  L. Gautier,et al.  Comparative Genomics of Listeria Species , 2001, Science.

[83]  P. Cossart Actin‐based motility of pathogens: the Arp2/3 complex is a central player , 2000, Cellular microbiology.

[84]  P. Cossart,et al.  A Role for Phosphoinositide 3-Kinase in Bacterial Invasion , 1996, Science.

[85]  Schlech Wf Pathogenesis and immunology of Listeria monocytogenes. , 1996 .

[86]  P. Sansonetti,et al.  Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2 , 1990, Infection and immunity.

[87]  D. Portnoy,et al.  Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes , 1989, The Journal of cell biology.

[88]  R. Schoenfeld,et al.  Comparative Genomics of Listeria Species , 1976 .

[89]  E. Unanue,et al.  REQUIREMENT OF THYMUS (T) LYMPHOCYTES FOR RESISTANCE TO LISTERIOSIS , 1972, The Journal of experimental medicine.

[90]  A. Killinger,et al.  Listeria monocytogenes and listeric infections. , 1966, Bacteriological reviews.

[91]  G. Mackaness CELLULAR RESISTANCE TO INFECTION , 1962, The Journal of experimental medicine.

[92]  C. Burn Characteristics of a New Species of the Genus Listerella Obtained from Human Sources , 1935, Journal of bacteriology.

[93]  E. Unanue,et al.  Mechanisms and immunological effects of apoptosis caused by Listeria monocytogenes. , 2012, Advances in immunology.

[94]  F Allerberger,et al.  Listeriosis: a resurgent foodborne infection. , 2010, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[95]  B. Finlay,et al.  Invasive and adherent bacterial pathogens co-Opt host clathrin for infection. , 2008, Nature Reviews Microbiology.

[96]  W. Schlech Pathogenesis and immunology of Listeria monocytogenes. , 1996, Pathologie-biologie.

[97]  R. A. Webb,et al.  A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.) , 1926 .