Dispersion-managed breathing-mode semiconductor mode-locked ring laser: experimental characterization and numerical simulations

A dispersion-managed breathing-mode mode-locked semiconductor ring laser is studied. The working regime and pulse evolution at the key cavity points are experimentally characterized and numerically simulated. Linearly chirped, asymmetric exponential pulses are generated and externally compressed to 274 fs, which is within 10% of the bandwidth limit. The close agreement between the simulated and the measured results verifies our ability to control the physical mechanisms involved in pulse formation and shaping within the ring cavity.

[1]  H. Haus,et al.  Dispersion-managed solitons in the net positive dispersion regime , 1999 .

[2]  Ci-Ling Pan,et al.  Sub femto-joule sensitive single-shot OPA-XFROG and its application in study of white-light supercontinuum generation. , 2004, Optics express.

[3]  C. Shu,et al.  Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser , 2003, IEEE Photonics Technology Letters.

[4]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[5]  P. Delfyett,et al.  External-cavity, actively mode-locked grating-coupled surface-emitting laser and amplification characteristics of a grating-coupled semiconductor optical amplifier. , 2004, Optics letters.

[6]  James P. Gordon,et al.  Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient , 1985 .

[7]  R. Ludwig,et al.  Mode-locked semiconductor lasers and their applications for optical signal processing , 1999 .

[8]  David A. B. Miller,et al.  Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities , 1985 .

[9]  Xinyong Dong,et al.  A largely tunable CFBG-based dispersion compensator with fixed center wavelength. , 2003, Optics express.

[10]  Yaron Silberberg,et al.  Theory of mode locking of a laser diode with a multiple-quantum-well structure , 1985 .

[11]  W. Sibbett,et al.  Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier , 2003, IEEE Photonics Technology Letters.

[12]  David A. B. Miller,et al.  The benefits of ultrashort optical pulses in optically interconnected systems , 2003 .

[13]  T. Yilmaz,et al.  High-quality photonic sampling streams from a semiconductor diode ring laser , 2002 .

[14]  C. Headley,et al.  Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers , 2003 .

[15]  H. Telle,et al.  Complex intensity modulation transfer function for supercontinuum generation in microstructure fibers. , 2004, Optics express.

[16]  J W Nicholson,et al.  Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements. , 1999, Optics letters.

[17]  A. Yariv,et al.  Broader, flatter optical spectra of passively mode-locked semiconductor lasers for a wavelength-division multiplexing source. , 1997, Applied optics.

[18]  R. Buczyński Photonic Crystal Fibers , 2004 .

[19]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[20]  J. Gordon,et al.  Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion. , 1984, Optics letters.

[21]  M. Jablonski,et al.  Laser mode locking using a saturable absorber incorporating carbon nanotubes , 2004, Journal of Lightwave Technology.

[22]  FROG measured 185 fs pulses generated by down-chirped dispersion-managed breathing-mode semiconductor laser , 2005 .

[23]  M. Yan,et al.  Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm. , 2004, Optics express.

[24]  P. So,et al.  Prospects of nonlinear microscopy in the next decade: an overview. , 1998, Optics express.

[25]  Peter J. Delfyett Compact sources of ultrashort pulses: High power ultrafast semiconductor injection diode lasers , 1995 .

[26]  J W Nicholson,et al.  Unbalanced third-order correlations for full characterization of femtosecond pulses. , 2000, Optics letters.

[27]  A. Weiner,et al.  Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum , 2001 .

[28]  P. Delfyett,et al.  Actively mode-locked grating coupled surface emitting semiconductor laser (GCSEL) , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[29]  Hermann A. Haus,et al.  Theory of modelocking of a laser diode in an external resonator , 1980 .

[30]  Patrick D. O'Shea,et al.  Highly simplified device for ultrashort-pulse measurement. , 2001, Optics letters.

[31]  F. M. Knox,et al.  Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion , 1997 .

[32]  Hiroshi Ito,et al.  Recovery of 40 GHz optical clock from 160 Gbit/s data using regeneratively modelocked semiconductor laser , 2003 .

[33]  Chun-Kit Chan,et al.  Analysis of performance optimization in supercontinuum sources. , 2004, Optics letters.

[34]  P.J. Delfyett,et al.  Pulsed injection locking dynamics of passively mode-locked external-cavity semiconductor laser systems for all-optical clock recovery , 2000, Journal of Lightwave Technology.

[35]  J. Lourtioz,et al.  Nonlinear chirp compensation in high-power broad-spectrum pulses from single-stripe mode-locked laser diodes , 1995 .

[36]  Bojan Resan,et al.  Dispersion managed semiconductor mode-locked ring laser , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[37]  F.W. Wise,et al.  Generation of 36-femtosecond pulses from a ytterbium fiber laser , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[38]  J. Lourtioz,et al.  Passive modelocking of semiconductor lasers with tunable group velocity dispersion cavity , 1993 .

[39]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[40]  G. Alphonse,et al.  168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser , 2003, IEEE Photonics Technology Letters.

[41]  D. Miller,et al.  Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures , 1984 .

[42]  Y. Zou,et al.  Low-threshold-current-density 1.5 mu m lasers using compressively strained InGaAsP quantum wells , 1992, IEEE Photonics Technology Letters.

[43]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[44]  C. Kurtzke,et al.  Suppression of fiber nonlinearities by appropriate dispersion management , 1993, IEEE Photonics Technology Letters.

[45]  Bianca E. N. Keeler Wavelength division multiplexed optical interconnects using short pulses , 2003 .

[46]  J. Fujimoto,et al.  Real-time, ultrahigh-resolution optical coherence tomography at 1.5 µm using a femtosecond fiber laser continuum , 2004 .

[47]  J. W. Nicholson,et al.  Noise sensitivity and accuracy of femtosecond pulse retrieval by phase and intensity from correlation and spectrum only (PICASO) , 2002 .

[48]  Katherine L. Hall,et al.  Chapter 2 – Nonlinearities in Active Media , 1998 .

[49]  H. Haus,et al.  Dispersion-managed solitons as nonlinear Bloch waves , 1999 .

[50]  V. Couderc,et al.  High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design , 2004, IEEE Photonics Technology Letters.

[51]  Ali M. Darwish,et al.  Subpicosecond gain and index nonlinearities in InGaAsP diode lasers , 1994 .

[52]  Lawrence Shah,et al.  Laser ablation threshold and etch rate comparison between the ultrafast Yb fiber-based FCPA laser and a Ti:sapphire laser for various materials , 2004, International Symposium on Laser Precision Microfabrication.

[53]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .

[54]  S. Gee,et al.  Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers , 1997 .

[55]  Peter J. Delfyett,et al.  External-cavity actively mode-locked GCSEL (grating coupled surface emitting laser) and amplification characteristics of GCSOA (grating coupled surface emitting semiconductor optical amplifier) , 2004, SPIE Defense + Commercial Sensing.

[56]  Matthew E. Grein,et al.  Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors , 2001 .

[57]  P. J. Delfyett,et al.  Femtosecond hybrid mode-locked semiconductor laser and amplifier dynamics , 1994 .

[58]  Martin Schell,et al.  Chirp and stability of mode-locked semiconductor lasers , 1996 .

[59]  L. Boivin,et al.  110 channels x 2.35 Gb/s from a single femtosecond laser , 1999, IEEE Photonics Technology Letters.

[60]  C. D. de Matos,et al.  Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40x pulse compression using air-core fiber and conventional erbium-doped fiber amplifier. , 2004, Optics express.

[61]  J. Leegwater Theory of mode-locked semiconductor lasers , 1996 .

[62]  Wei-Ping Huang,et al.  Design of photonic crystal fibers for dispersion-related applications , 2003 .

[63]  R. van Roijen,et al.  Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion, and pulse collisions , 1996 .

[64]  Jean-Claude Diels,et al.  Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale , 1996 .

[65]  Peter J. Delfyett,et al.  Femtosecond self- and cross-phase modulation in semiconductor laser amplifiers , 1996 .

[66]  Peter J. Delfyett,et al.  High-power ultrafast laser diodes , 1992 .

[67]  Hiroshi Okamoto,et al.  Large optical nonlinearity and fast response time in low-temperature grown GaAs/AlAs multiple quantum wells , 2000 .

[68]  Jun Ye,et al.  Orthogonal control of the frequency comb dynamics of a mode-locked laser diode. , 2003, Optics letters.

[69]  James G. Fujimoto,et al.  Dispersion-managed mode locking , 1999 .

[70]  P. W. Smith,et al.  Passive mode locking of a semiconductor diode laser. , 1984, Optics letters.

[71]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[72]  Klaus Mølmer,et al.  Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. , 2004, Optics express.

[73]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.