An Efficient Multigrid Calculation of the Far Field Map for Helmholtz and Schrödinger Equations

In this paper we present a new highly efficient calculation method for the far field amplitude pattern that arises from scattering problems governed by the $d$-dimensional Helmholtz equation and, by extension, Schrodinger's equation. The new technique is based upon a reformulation of the classical real-valued Green's function integral for the far field amplitude to an equivalent integral over a complex domain. It is shown that the scattered wave, which is essential for the calculation of the far field integral, can be computed very efficiently along this complex contour (or manifold, in multiple dimensions). Using the iterative multigrid method as a solver for the discretized damped scattered wave system, the proposed approach results in a fast and scalable calculation method for the far field map. The complex contour method is successfully validated on Helmholtz and Schrodinger model problems in two and three spatial dimensions, and multigrid convergence results are provided to substantiate the wavenumbe...

[1]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[2]  Cornelis W. Oosterlee,et al.  Multigrid for High-Dimensional Elliptic Partial Differential Equations on Non-equidistant Grids , 2007, SIAM J. Sci. Comput..

[3]  Thomas N. Rescigno,et al.  Double Photoionization of Aligned Molecular Hydrogen , 2006 .

[4]  T. N. Rescigno,et al.  Approach to electron-impact ionization that avoids the three-body Coulomb asymptotic form , 1997 .

[5]  Wim Vanroose,et al.  On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..

[6]  Cornelis Vuik,et al.  On the convergence of shifted Laplace preconditioner combined with multilevel deflation , 2013, Numer. Linear Algebra Appl..

[7]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[8]  N. Moiseyev,et al.  Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling , 1998 .

[9]  Edwin Hewitt,et al.  Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable , 1965 .

[10]  L. M. Delves,et al.  On the Convergence Rate of Generalized Fourier Expansions , 1973 .

[11]  M. Seaton,et al.  Electron Impact Ionization of Atomic Hydrogen , 1963 .

[12]  Bram Reps Iterative and multigrid methods for wave problems with complex-valued boundaries , 2012 .

[13]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[14]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[15]  W. Schmitt,et al.  A 4π recoil-ion electron momentum analyzer: a high-resolution “microscope” for the investigation of the dynamics of atomic, molecular and nuclear reactions , 1996 .

[16]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[17]  Y. Erlangga,et al.  ON A MULTILEVEL KRYLOV METHOD FOR THE HELMHOLTZ EQUATION PRECONDITIONED BY SHIFTED LAPLACIAN , 2008 .

[18]  Wim Vanroose,et al.  A preconditioned iterative solver for the scattering solutions of the Schrödinger equation , 2010, ArXiv.

[19]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[20]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[21]  Cornelis Vuik,et al.  A new iterative solver for the time-harmonic wave equation , 2006 .

[22]  Barry Simon,et al.  The definition of molecular resonance curves by the method of exterior complex scaling , 1979 .

[23]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[24]  A. Sihvola,et al.  Do we need mathematics in remote sensing?Book review of D. Colton and R.Kress: Inverse acoustic and electromagnetic scattering theory. , 1994 .

[25]  Henri Calandra,et al.  Two-Level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics , 2012 .

[26]  René-Édouard Plessix,et al.  Separation-of-variables as a preconditioner for an iterative Helmholtz solver , 2003 .

[27]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[28]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[29]  Wim Vanroose,et al.  Analyzing the wave number dependency of the convergence rate of a multigrid preconditioned Krylov method for the Helmholtz equation with an absorbing layer , 2011, Numer. Linear Algebra Appl..

[30]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[31]  Y. Saad,et al.  Preconditioning Helmholtz linear systems , 2010 .

[32]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[33]  Harald Friedrich,et al.  Theoretical Atomic Physics , 1991 .

[34]  James Colgan,et al.  Double photoionization of C2+ , 2014 .

[35]  R. Newton Scattering theory of waves and particles , 1966 .

[36]  Reinhard Nabben,et al.  Algebraic Multilevel Krylov Methods , 2009, SIAM J. Sci. Comput..

[37]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[38]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[39]  Wim Vanroose,et al.  Complete Photo-Induced Breakup of the H2 Molecule as a Probe of Molecular Electron Correlation , 2005, Science.

[40]  Scott P. MacLachlan,et al.  A fast method for the solution of the Helmholtz equation , 2011, J. Comput. Phys..

[41]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[42]  Isaacs,et al.  Collisional breakup in a quantum system of three charged particles , 1999, Science.

[43]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[44]  Cornelis Vuik,et al.  Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation , 2006 .

[45]  Wim Vanroose,et al.  Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems , 2011, Numer. Linear Algebra Appl..

[46]  J. Combes,et al.  Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions , 1971 .

[47]  Cornelis W. Oosterlee,et al.  A multigrid‐based shifted Laplacian preconditioner for a fourth‐order Helmholtz discretization , 2009, Numer. Linear Algebra Appl..

[48]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[49]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[50]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[51]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[52]  Thomas N. Rescigno,et al.  TOPICAL REVIEW: Solving the three-body Coulomb breakup problem using exterior complex scaling , 2004 .

[53]  Erkki Heikkola,et al.  An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation , 2007, J. Comput. Phys..