Orientational imaging and tracking of single CdSe nanocrystals by defocused microscopy

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  J. Jaiswal,et al.  Potentials and pitfalls of fluorescent quantum dots for biological imaging. , 2004, Trends in cell biology.

[3]  L Coolen,et al.  Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. , 2004, Physical review letters.

[4]  Jörg Enderlein,et al.  Image Analysis of Defocused Single-Molecule Images for Three-Dimensional Molecule Orientation Studies , 2004 .

[5]  Igor L. Medintz,et al.  A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Akihiro Kusumi,et al.  Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. , 2004, Biophysical journal.

[7]  David Colquhoun,et al.  Function and structure in glycine receptors and some of their relatives , 2004, Trends in Neurosciences.

[8]  W E Moerner,et al.  Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. , 2004, Annual review of physical chemistry.

[9]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[10]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[11]  Yale E. Goldman,et al.  Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization , 2003, Nature.

[12]  Jörg Enderlein,et al.  Orientation imaging of single molecules by wide-field epifluorescence microscopy , 2003 .

[13]  Alexandr Jonás,et al.  Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. , 2003, Optics letters.

[14]  Moungi G. Bawendi,et al.  Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Ha,et al.  Single-molecule fluorescence resonance energy transfer. , 2001, Methods.

[16]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[17]  A. Triller,et al.  Fast and reversible trapping of surface glycine receptors by gephyrin , 2001, Nature Neuroscience.

[18]  Masasuke Yoshida,et al.  Stepping rotation of F1-ATPase visualized through angle-resolved single-fluorophore imaging. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[20]  G. Schütz,et al.  Single-molecule anisotropy imaging. , 1999, Biophysical journal.

[21]  T. Laurence,et al.  Polarization Spectroscopy of Single Fluorescent Molecules , 1999 .

[22]  M. Bawendi,et al.  Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy , 1999, Nature.

[23]  W. Moerner,et al.  Illuminating single molecules in condensed matter. , 1999, Science.

[24]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[25]  J. Jasny,et al.  Single molecules observed by immersion mirror objective. A novel method of finding the orientation of a radiating dipole , 1997 .

[26]  Norris,et al.  Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. , 1996, Physical review. B, Condensed matter.

[27]  Louis E. Brus,et al.  Imaging and Time-Resolved Spectroscopy of Single Molecules at an Interface , 1996, Science.

[28]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[29]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.