Analysis of thin shells using anisotropic polyconvex energy densities
暂无分享,去创建一个
[1] R. J. Knops,et al. Nonlinearanalysis and Mechanics : Heriot-Watt Symposium , 1978 .
[2] E. Ramm,et al. Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .
[3] Yavuz Başar,et al. Shear deformation models for large-strain shell analysis , 1997 .
[4] P. Neff,et al. A variational approach for materially stable anisotropic hyperelasticity , 2005 .
[5] Charles B. Morrey,et al. QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .
[6] E. Ramm,et al. Shear deformable shell elements for large strains and rotations , 1997 .
[7] Mikhail Itskov,et al. A generalized orthotropic hyperelastic material model with application to incompressible shells , 2001 .
[8] J. C. Simo,et al. A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .
[9] E. Stein,et al. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .
[10] O. C. Zienkiewicz,et al. Analysis of thick and thin shell structures by curved finite elements , 1970 .
[11] T. Hughes,et al. Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .
[12] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .
[13] A.J.M. Spencer,et al. Theory of invariants , 1971 .
[14] Yavuz Başar,et al. Finite element formulation of the Ogden material model with application to rubber-like shells , 1998 .
[15] T. R. Hughes,et al. Mathematical foundations of elasticity , 1982 .
[16] Ted Belytschko,et al. Resultant-stress degenerated-shell element , 1986 .
[17] Werner Wagner,et al. A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .
[18] J. Ball. Convexity conditions and existence theorems in nonlinear elasticity , 1976 .
[19] A.J.M. Spencer,et al. Isotropic Polynomial Invariants and Tensor Functions , 1987 .
[20] J. P. Boehler,et al. Introduction to the Invariant Formulation of Anisotropic Constitutive Equations , 1987 .
[21] J. Meixner,et al. S. Flügge, Herausgeber: Handbuch der Physik, Band III/3: Die nicht‐linearen Feldtheorien der Mechanik. Von C. Truesdell und W. Noll. Springer‐Verlag, Berlin/Heidelberg/New York 1965. VIII/602 Seiten. Preis: 198,‐ DM , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.
[22] D. Balzani. Polyconvex anisotropic energies and modeling of damage applied to arterial walls , 2006 .
[23] Jörg Schröder,et al. Construction of polyconvex, anisotropic free‐energy functions , 2003 .
[24] Y. Başar,et al. Incompressibility at large strains and finite-element implementation , 2004 .
[25] Sven Klinkel,et al. Using finite strain 3D‐material models in beam and shell elements , 2002 .
[26] R. Taylor,et al. Theory and finite element formulation of rubberlike membrane shells using principal stretches , 1992 .
[27] P. M. Naghdi,et al. On the Derivation of Shell Theories by Direct Approach , 1974 .
[28] Eduardo N. Dvorkin,et al. A formulation of the MITC4 shell element for finite strain elasto-plastic analysis , 1995 .
[29] P. Neff,et al. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .
[30] J. C. Simo,et al. Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .
[31] K. Bathe,et al. A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .
[32] R. L. Harder,et al. A proposed standard set of problems to test finite element accuracy , 1985 .
[33] G. Holzapfel,et al. A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .