Analysis of thin shells using anisotropic polyconvex energy densities

In this contribution the numerical framework for the simulation of anisotropic thin shells is presented on the basis of polyconvex strain energy functions. The nonlinear shell theory is based on the Reissner–Mindlin kinematic along with inextensible director vectors. For the variational framework we consider a three field variational functional taking into account independent displacements, enhanced strains and stress resultants, where the latter field is eliminated by the evaluation of some orthogonality conditions. The iterative enforcement of the zero normal stress condition at the integration points allows consideration of arbitrary three-dimensional constitutive equations. Due to the fact that we are interested in fiber-reinforced materials we consider an additive structure of the energy decoupled in an isotropic part for the matrix and a superposition of transversely isotropic parts for the fiber families. For the representation of the anisotropy we use the concept of structural tensors and formulate the strain energy function in terms of principal and mixed invariants of the right Cauchy–Green tensor and the structural tensor. In order to guarantee the existence of minimizers we focus on polyconvex strain energy functions. The anisotropy effect is documented in several representative examples.

[1]  R. J. Knops,et al.  Nonlinearanalysis and Mechanics : Heriot-Watt Symposium , 1978 .

[2]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[3]  Yavuz Başar,et al.  Shear deformation models for large-strain shell analysis , 1997 .

[4]  P. Neff,et al.  A variational approach for materially stable anisotropic hyperelasticity , 2005 .

[5]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[6]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[7]  Mikhail Itskov,et al.  A generalized orthotropic hyperelastic material model with application to incompressible shells , 2001 .

[8]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[9]  E. Stein,et al.  A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains , 1996 .

[10]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[11]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[12]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[13]  A.J.M. Spencer,et al.  Theory of invariants , 1971 .

[14]  Yavuz Başar,et al.  Finite element formulation of the Ogden material model with application to rubber-like shells , 1998 .

[15]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[16]  Ted Belytschko,et al.  Resultant-stress degenerated-shell element , 1986 .

[17]  Werner Wagner,et al.  A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .

[18]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[19]  A.J.M. Spencer,et al.  Isotropic Polynomial Invariants and Tensor Functions , 1987 .

[20]  J. P. Boehler,et al.  Introduction to the Invariant Formulation of Anisotropic Constitutive Equations , 1987 .

[21]  J. Meixner,et al.  S. Flügge, Herausgeber: Handbuch der Physik, Band III/3: Die nicht‐linearen Feldtheorien der Mechanik. Von C. Truesdell und W. Noll. Springer‐Verlag, Berlin/Heidelberg/New York 1965. VIII/602 Seiten. Preis: 198,‐ DM , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.

[22]  D. Balzani Polyconvex anisotropic energies and modeling of damage applied to arterial walls , 2006 .

[23]  Jörg Schröder,et al.  Construction of polyconvex, anisotropic free‐energy functions , 2003 .

[24]  Y. Başar,et al.  Incompressibility at large strains and finite-element implementation , 2004 .

[25]  Sven Klinkel,et al.  Using finite strain 3D‐material models in beam and shell elements , 2002 .

[26]  R. Taylor,et al.  Theory and finite element formulation of rubberlike membrane shells using principal stretches , 1992 .

[27]  P. M. Naghdi,et al.  On the Derivation of Shell Theories by Direct Approach , 1974 .

[28]  Eduardo N. Dvorkin,et al.  A formulation of the MITC4 shell element for finite strain elasto-plastic analysis , 1995 .

[29]  P. Neff,et al.  Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .

[30]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[31]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[32]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[33]  G. Holzapfel,et al.  A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .