Patterns and Determinants of Halophilic Archaea (Class Halobacteria) Diversity in Tunisian Endorheic Salt Lakes and Sebkhet Systems

ABSTRACT We examined the diversity and community structure of members of the halophilic Archaea (class Halobacteria) in samples from central and southern Tunisian endorheic salt lakes and sebkhet (also known as sebkha) systems using targeted 16S rRNA gene diversity survey and quantitative PCR (qPCR) approaches. Twenty-three different samples from four distinct locations exhibiting a wide range of salinities (2% to 37%) and physical characteristics (water, salt crust, sediment, and biofilm) were examined. A total of 4,759 operational taxonomic units at the 0.03 (species-level) cutoff (OTU0.03s) belonging to 45 currently recognized genera were identified, with 8 to 43 genera (average, 30) identified per sample. In spite of the large number of genera detected per sample, only a limited number (i.e., 2 to 16) usually constituted the majority (≥80%) of encountered sequences. Halobacteria diversity showed a strong negative correlation to salinity (Pearson correlation coefficient = −0.92), and community structure analysis identified salinity, rather than the location or physical characteristics of the sample, as the most important factor shaping the Halobacteria community structure. The relative abundance of genera capable of biosynthesis of the compatible solute(s) trehalose or 2-sulfotrehalose decreased with increasing salinities (Pearson correlation coefficient = −0.80). Indeed, qPCR analysis demonstrated that the Halobacteria otsB (trehalose-6-phosphatase)/16S rRNA gene ratio decreases with increasing salinities (Pearson correlation coefficient = −0.87). The results highlight patterns and determinants of Halobacteria diversity at a previously unexplored ecosystem and indicate that genera lacking trehalose biosynthetic capabilities are more adapted to growth in and colonization of hypersaline (>25% salt) ecosystems than trehalose producers.

[1]  G. Sprott,et al.  Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology. , 1976, Canadian Journal of Microbiology (print).

[2]  A. Oren Life at High Salt Concentrations , 2006 .

[3]  M. Dyall-Smith,et al.  Combined Use of Cultivation-Dependent and Cultivation-Independent Methods Indicates that Members of Most Haloarchaeal Groups in an Australian Crystallizer Pond Are Cultivable , 2004, Applied and Environmental Microbiology.

[4]  Erin A. Becker,et al.  Phylogenetically Driven Sequencing of Extremely Halophilic Archaea Reveals Strategies for Static and Dynamic Osmo-response , 2014, PLoS genetics.

[5]  N. Youssef,et al.  Phylogenetic Diversities and Community Structure of Members of the Extremely Halophilic Archaea (Order Halobacteriales) in Multiple Saline Sediment Habitats , 2011, Applied and Environmental Microbiology.

[6]  Li-li Zhang,et al.  Natribaculum breve gen. nov., sp. nov. and Natribaculum longum sp. nov., halophilic archaea isolated from saline soil. , 2015, International journal of systematic and evolutionary microbiology.

[7]  G. Muyzer,et al.  Microbial diversity and biogeochemical cycling in soda lakes , 2014, Extremophiles.

[8]  J. Lanyi,et al.  The state of binding of intracellular K + in Halobacterium cutirubrum. , 1972, Canadian journal of microbiology.

[9]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[10]  Kentaro Inoue,et al.  Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. , 2011, International journal of systematic and evolutionary microbiology.

[11]  A. Oren Microbial life at high salt concentrations: phylogenetic and metabolic diversity , 2008, Saline systems.

[12]  Jung-Sook Lee,et al.  Halogranum salarium sp. nov., a halophilic archaeon isolated from sea salt. , 2011, Systematic and applied microbiology.

[13]  J. Antón,et al.  Archaeal Biodiversity in Crystallizer Ponds from a Solar Saltern: Culture versus PCR , 2000, Microbial Ecology.

[14]  Xue-Wei Xu,et al.  Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. , 2010, International journal of systematic and evolutionary microbiology.

[15]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[16]  M. Alexe,et al.  Spatial and temporal distribution of archaeal diversity in meromictic, hypersaline Ocnei Lake (Transylvanian Basin, Romania) , 2014, Extremophiles.

[17]  Mark A Schneegurt,et al.  Archaeal Diversity at the Great Salt Plains of Oklahoma Described by Cultivation and Molecular Analyses , 2009, Microbial Ecology.

[18]  J. Fry,et al.  PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. , 2002, Nucleic acids research.

[19]  J. Banfield,et al.  Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community , 2013, The ISME Journal.

[20]  Xue-Wei Xu,et al.  Halogranum gelatinilyticum sp. nov. and Halogranum amylolyticum sp. nov., isolated from a marine solar saltern, and emended description of the genus Halogranum. , 2011, International journal of systematic and evolutionary microbiology.

[21]  Y. Jeon,et al.  Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment. , 2011, Astrobiology.

[22]  Matthew Z. DeMaere,et al.  Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea , 2014, The ISME Journal.

[23]  P. Jablonski,et al.  2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea , 1997, Journal of bacteriology.

[24]  A. Oren,et al.  Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. , 2007, International journal of systematic and evolutionary microbiology.

[25]  A. Oren,et al.  Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. , 2008, International journal of systematic and evolutionary microbiology.

[26]  Matthew Z. DeMaere,et al.  Microbial ecology of an Antarctic hypersaline lake: genomic assessment of ecophysiology among dominant haloarchaea , 2014, The ISME Journal.

[27]  N. Youssef,et al.  Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales , 2013, The ISME Journal.

[28]  E. Ammar,et al.  Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. , 2010, Research in microbiology.

[29]  A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution , 2007, Saline systems.

[30]  N. Youssef,et al.  Diversity rankings among bacterial lineages in soil , 2009, The ISME Journal.

[31]  A. Oren,et al.  Dynamics and Persistence of Dead Sea Microbial Populations as Shown by High-Throughput Sequencing of rRNA , 2012, Applied and Environmental Microbiology.

[32]  J. Bae,et al.  Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing , 2010, The ISME Journal.

[33]  F. Rodríguez-Valera,et al.  Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongata and the archaeon Haloferax volcanii , 1997, Journal of bacteriology.

[34]  Marc T. Facciotti,et al.  Sequencing of Seven Haloarchaeal Genomes Reveals Patterns of Genomic Flux , 2012, PloS one.

[35]  A. Oren,et al.  Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber , 2002, Extremophiles.

[36]  A. Oren The dying Dead Sea: The microbiology of an increasingly extreme environment , 2010 .

[37]  K. Timmis,et al.  Isolation of haloarchaea that grow at low salinities. , 2004, Environmental microbiology.

[38]  J H CHRISTIAN,et al.  Solute concentrations within cells of halophilic and non-halophilic bacteria. , 1962, Biochimica et biophysica acta.

[39]  Timothy J. Harlow,et al.  Ancient origin of the divergent forms of leucyl-tRNA synthetases in the Halobacteriales , 2012, BMC Evolutionary Biology.

[40]  P. Qian,et al.  Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea , 2011, The ISME Journal.

[41]  Heng-Lin Cui,et al.  Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria , 2011, Extremophiles.

[42]  D. Canfield,et al.  Community Composition of a Hypersaline Endoevaporitic Microbial Mat , 2005, Applied and Environmental Microbiology.

[43]  Eric Bapteste,et al.  Evolution of the RNA polymerase B' subunit gene (rpoB') in Halobacteriales: a complementary molecular marker to the SSU rRNA gene. , 2004, Molecular biology and evolution.

[44]  Dieter Oesterhelt,et al.  A novel mode of sensory transduction in archaea: binding protein‐mediated chemotaxis towards osmoprotectants and amino acids , 2002, The EMBO journal.

[45]  J. Banfield,et al.  Assembly-Driven Community Genomics of a Hypersaline Microbial Ecosystem , 2013, PloS one.

[46]  Gerald G. Owenson,et al.  Microbial diversity of soda lakes , 1998, Extremophiles.

[47]  M. Ginzburg,et al.  Ion Metabolism in a Halobacterium : I. Influence of age of culture on intracellular concentrations , 1970 .

[48]  J. Braganca,et al.  Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India , 2012, Aquatic biosystems.

[49]  R. Usami,et al.  Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. , 2010, International Journal of Systematic and Evolutionary Microbiology.

[50]  M. Dyall-Smith,et al.  Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds , 2009, Extremophiles.

[51]  S. A. Fazeli,et al.  Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis. , 2014, International journal of systematic and evolutionary microbiology.

[52]  Yanhe Ma,et al.  Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. , 2004, International journal of systematic and evolutionary microbiology.

[53]  D. Sorokin,et al.  Distribution and Diversity of Soda Lake Alkaliphiles , 2011 .

[54]  J. Braganca,et al.  Isolation and characterization of Haloarchaea from low-salinity coastal sediments and waters of Goa , 2009 .

[55]  B. Roe,et al.  Survey of Archaeal Diversity Reveals an Abundance of Halophilic Archaea in a Low-Salt, Sulfide- and Sulfur-Rich Spring , 2004, Applied and Environmental Microbiology.

[56]  A. Oren Molecular ecology of extremely halophilic Archaea and Bacteria. , 2002, FEMS microbiology ecology.

[57]  S. Fendrihan,et al.  Isolation of Viable Haloarchaea from Ancient Salt Deposits and Application of Fluorescent Stains for in Situ Detection of Halophiles in Hypersaline Environmental Samples and Model Fluid Inclusions , 2005 .

[58]  Xue-Wei Xu,et al.  Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. , 2011, International journal of systematic and evolutionary microbiology.

[59]  H. Stan-Lotter,et al.  Novel haloarchaeal 16S rRNA gene sequences from Alpine Permo-Triassic rock salt , 2001, Extremophiles.

[60]  C. Schleper,et al.  Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies , 2002, Extremophiles.

[61]  A. Oren Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. , 2012, International journal of systematic and evolutionary microbiology.

[62]  Y. Liu,et al.  Halophilic Archaea Cultivated from Surface Sterilized Middle-Late Eocene Rock Salt Are Polyploid , 2014, PloS one.

[63]  J. Antón,et al.  Microbial Diversity in Maras Salterns, a Hypersaline Environment in the Peruvian Andes , 2006, Applied and Environmental Microbiology.

[64]  B. Jones,et al.  Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. , 2008, International journal of systematic and evolutionary microbiology.

[65]  F. Rodríguez-Valera,et al.  Potassium ion accumulation in cells of different halobacteria. , 1986, Microbiologia.

[66]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[67]  Ying-yi Huo,et al.  Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. , 2013, International journal of systematic and evolutionary microbiology.