Effects of LaB6 addition on arc-jet convectively heated SiC-containing ZrB2-based ultra-high temperature ceramics in high enthalpy supersonic airflows

[1]  Bala Vaidhyanathan,et al.  UHTC composites for hypersonic applications , 2014 .

[2]  M. Nygren,et al.  On the enhancement of the spark-plasma sintering kinetics of ZrB2–SiC powder mixtures subjected to high-energy co-ball-milling , 2013 .

[3]  R. Speyer,et al.  Spectral emittance of resistively heated oxidized ZrB 2 –30 mol% SiC , 2012 .

[4]  Olivier Chazot,et al.  Temperature Jump Phenomenon During Plasmatron Testing of ZrB₂-SiC Ultrahigh-temperature Ceramics , 2012 .

[5]  K. Ray,et al.  Electrical and thermophysical properties of ZrB2 and HfB2 based composites , 2012 .

[6]  Y. Sakka,et al.  Microstructure characterization of ZrB2–SiC composite fabricated by spark plasma sintering with TaSi2 additive , 2012 .

[7]  Alexandra Navrotsky,et al.  Experimental Approaches to the Thermodynamics of Ceramics Above 1500°C , 2012 .

[8]  William E Lee,et al.  In situ Formation of Oxidation Resistant Refractory Coatings on SiC‐Reinforced ZrB2 Ultra High Temperature Ceramics , 2012 .

[9]  G. Hilmas,et al.  Oxidation of ultra-high temperature transition metal diboride ceramics , 2012 .

[10]  Mark M. Opeka,et al.  Modeling Oxidation Kinetics of SiC‐Containing Refractory Diborides , 2012 .

[11]  G. Hilmas,et al.  Mechanical Characterization of ZrB2–SiC Composites with Varying SiC Particle Sizes , 2011 .

[12]  Yue Zhang,et al.  Oxidation behaviour of zirconium diboride–silicon carbide ceramic composites under low oxygen partial pressure , 2011 .

[13]  A. Jankowiak,et al.  Ultra High Temperature Ceramics : Densification, Properties and Thermal Stability. , 2011 .

[14]  L. Peng,et al.  ZrB2–SiC composite parts in oxyacetylenic torch tests: Experimental and computational assessment of chemical, thermal and mechanical behavior , 2011 .

[15]  William E Lee,et al.  Toward Oxidation-Resistant ZrB2-SiC Ultra High Temperature Ceramics , 2011 .

[16]  R. Savino,et al.  Dynamic oxidation of ultra-high temperature ZrB2–SiC under high enthalpy supersonic flows , 2011 .

[17]  A. Vesel,et al.  Recombination of atomic oxygen on sintered zirconia at high temperature in non-equilibrium air plasma , 2010 .

[18]  Jonathan L. Bell,et al.  In situ studies of oxidation of ZrB2 and ZrB2-SiC composites at high temperatures , 2010 .

[19]  Raffaele Savino,et al.  Plasma wind tunnel testing of ultra-high temperature ZrB2-SiC composites under hypersonic re-entry conditions , 2010 .

[20]  Thomas H. Squire,et al.  Material property requirements for analysis and design of UHTC components in hypersonic applications , 2010 .

[21]  Mario De Stefano Fumo,et al.  Arc-Jet Testing of Ultra-High-Temperature-Ceramics , 2010 .

[22]  Jiecai Han,et al.  Effect of Various Additives on the Oxidation Behavior of ZrB2‐Based Ultra‐High‐Temperature Ceramics at 1800°C , 2010 .

[23]  R. Speyer,et al.  Effect of SiC, TaB_2 and TaSi_2 additives on the isothermal oxidation resistance of fully dense zirconium diboride , 2009 .

[24]  Jan Thoemel,et al.  Oxidation of ZrB2-SiC Ultrahigh-Temperature Ceramic Composites in Dissociated Air , 2009 .

[25]  I. Swainson,et al.  Lanthanum pyrochlores and the effect of yttrium addition in the systems La2−xYxZr2O7 and La2−xYxHf2O7 , 2009 .

[26]  J. Halloran,et al.  Formation of Oxide Scales on Zirconium Diboride–Silicon Carbide Composites During Oxidation: Relation of Subscale Recession to Liquid Oxide Flow , 2008 .

[27]  Raffaele Savino,et al.  Aerothermodynamic Study of Ultrahigh-Temperature Ceramic Winglet for Atmospheric Reentry Test , 2008 .

[28]  Guo‐Jun Zhang,et al.  Fabrication and Characterization of ZrB2‐Based Ceramic Using Synthesized ZrB2–LaB6 Powder , 2008 .

[29]  J. Zaykoski,et al.  High‐Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2 , 2008 .

[30]  A. Bellosi,et al.  Processing and properties of ultra-high temperature ceramics for space applications , 2008 .

[31]  Jean-Louis Sans,et al.  Effect of the Machining Method on the Catalycity and Emissivity of ZrB2 and ZrB2–HfB2‐Based Ceramics , 2008 .

[32]  T. Lenosky,et al.  Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mechanisms , 2008 .

[33]  Jiecai Han,et al.  The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance , 2007 .

[34]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[35]  R. Savino,et al.  Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions , 2007 .

[36]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[37]  Robert Vassen,et al.  Zirconates as New Materials for Thermal Barrier Coatings , 2004 .

[38]  E. Opila,et al.  Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: Effect of Ta additions , 2004 .

[39]  Robert Vassen,et al.  Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare‐Earth‐Element Zirconate System , 2003 .

[40]  D. Munz,et al.  Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens , 1980 .

[41]  C. Liebert Emittance and absorptance of the National Aeronautics and Space Administration ceramic thermal barrier coating. [for gas turbine engine components] , 1978 .